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PREFACE

The 1984 ASME Symposium on Flow-Induced Vibration is a unique event in the
annals of technical meetings organized by ASME. Apart from promising to be one of the
most important symposia anywhere on this topic in recent memory (only time will tell
exactly how important), it is the first time that such a large symposium on the subject has
been organized by ASME. Furthermore, it is the first time that no less than six Divisions
of the ASME have cooperated in co-sponsoring a symposium on any given subject, which
surely bespeaks of the importance of the subject matter of this particular Symposium.
The participating Divisions are:

Applied Mechanics, Fluids Engineering, Heat Transfer, Noise Control and
Acoustics, Nuclear Engineering, and Pressure Vessels and Piping.

I should like to thank them all, for without their support this Symposium would not have
been the success that it is promising to be.

The Proceedings of the Symposium are published in six bound volumes, containing
sixty-eight papers in all, as follows:

Volume 1 Excitation and Vibration of Bluff Bodies in Cross Flow
Volume 2 Vibration of Arrays of Cylinders in Cross Flow
Volume 3 Vibration in Heat Exchangers
Volume 4 Vibration Induced by Axial and Annular Flows
Volume 5 Turbulence-Induced Noise and Vibration of Rigid and Compliant

Surfaces
Volume 6 Computational Aspects of Flow-Induced Vibration

The organization of a Symposium of this size, with world-wide participation (from 12
countries), has been both a challenging and rewarding experience. It entailed a great deal
of work by many people: the session developers, the reviewers, ASME Headquarters' staff,
the 1984 WAM Organizers and, of course, the authors. Of the many people involved, too
numerous to mention by name here, I am specially indebted to the session developers
and co-editors (0. M. Griffin, M. Sevik, M. K. Au-Yang, S. -S. Chen, J. M. Chenoweth,
M. D. Bernstein and A. J. Kalinowski), and would like to single out two: Dr. M. K. Au-Yang
and Dr. S. -S. Chen, whom I would like to thank for their unswerving support from the
very beginning, when the possibility of a "multidivisional symposium" looked like a pie
in the skyl I would also like to thank my secretary, Ruth Gray, for efficiently handling
the enormous amount of paperwork involved in several passes of sixty-eight-plus papers
across my desk.

Michael P. Paidoussis
Principal Symposium Coordinator
and Principal Editor
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FOREWORD

The study of the growth of a boundary layer on flat and curved rigid surfaces has been
the traditional realm of classical viscous aerodynamics and hydrodynamics, which began
with the "discovery" of the existence of the boundary layer by L. Prandtl at the beginning
of the century, and has grown exponentially ever since. Then followed the study of the
pressure field generated in the boundary layer, with special interest to the vibration of the
surfaces (in the case of flexible or flexibly mounted surfaces), as well as in the sound
radiated from these surfaces.

However, in recent years, it has become well established that the development of a
boundary layer on a truly compliant surface is not necessarily similar to that on a rigid
or sensibly rigid surface. The pioneering experiments of Kramer and the theoretical
work of T. Brooke Benjamin and M. T. Landahl in the early 1960's should.be mentioned
here, also, the more recent analytical work of F. E. Ffowcs-Williams and A. P. Dowling
for applying the Lighthill sound analogy towards turbulent-boundary-layer noise predic-
tions. Indeed, it has been found that transition to turbulence may be significantly retarded
by surface compliance, to which, Linong other things, has been attributed the efficient
swimming of dolphins, as well as opening the possibility of more efficient propulsion of
submarines and surface craft. Of course, the resulting wall-pressure field is also different,
as is the radiated sound field. Thus was created the relatively new field of research on
turbulence-induced noise and vibration of compliant surfaces.

The seven papers in this volume, Vol. 5 of the Symposium Proceedings, make a signi-
ficant contribution in the field, with both theoretical and experimental studies on the
flow-induced excitation and vibration of compliant surfaces. The first two papers are con-
cerned with the measurement of motions of the compliant surface induced by pressure
fluctuations in the turbulent boundary layer (TBL), while the following two papers switch
the emphasis to the fluid side of the TBL-structure interaction and focus on measurements
of the wall-pressure spectrum, with special attention to the low-wave number noise com-
ponents. In the last group of papers, theoretical aspects of turbulence are treated, where
the TBL pressure at the fluid/compliant-surface interface is first computed by a simulation
scheme and, in the last papers, by employing Dowling's extention of the Lighthill sound
analogy.

We would like to thank the authors for their cooperation in submitting papers of high
quality to this Symposium, and specifically on the topic of thisvolume of the Proceedings,
as well as for their willingness to participate and share their experience with others in

4. this Symposium. We would also like to thank the reviewers for their thoughtful comments
and for the experience they have brought to bear in the review process, which has ensured

r. the selection of only worthy papers for the Symposium and contributed to the improve-
ment of those finally accepted.

M. P. Paidoussis

A. J. Kalinowski
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A NONCONTACTING ELECTROOPTIC DISPLACEMENT SENSOR FOR
PIEZOELECTRICALLY DRIVEN ACTIVE SURFACES*

S. A. Cewin
Southwest Research Institute

San Antonio, Texas

ABSTRACT

A noncontacting electrooptic displacement sensor for the measurement of the
motion of a piezoelectrically excited active wall is described. The active vall
was constructed and studied as part of a program conducted for the Office of
Naval Research to investigate the drag reduction properties of an actively driven
surface in turbulent water flow. The sensor employed a two arm optical triangu-
lation method with a two element position sensitive detector to monitor the sur-
face displacements from a stand-off distance of 23 cm (9 inches). Designed to
operate in either an air or water medium, the displacement sensor demonstrated
better than 1.3 M (50 g-inch) resolution over displacement ranges of approxi-
mately 1.3 mm (.05-inch). The system was implemented in two different config-
urations: one using an infrared LED light source and the other a visible red
helium-neon laser source. In both cases, the light source was modulated, and a
phase locked detector was used to reject unwanted ambient light. Spot size was
an adjustable parameter and was set to 1 mm (.04-inch) for this application. The
displacement monitor was articulated in three axes on precision translation
stages to cover a 5 cm x 13 cm (2-in. x 5-in.) area. The system was successfully
used to monitor accurately displacements on the order of 25 pm (.001-inch) peak-
to-peak on an active wall driven by piezoelectric transducers over an acoustic
frequency range from DC to 150 Hz.

INTRODUCTION

This paper describes a noncontacting electrooptical displacement sensor
developed to monitor the motions of a piezoelectrically excited active wall with
peak-to-peak displacements on the order of 25 M. The active wall was devised in
a program conducted for the Office of Naval Researcht to investigate the drag
reduction properties of an actively driven surface in turbulent water flow. The
active portion of the wall was constructed by stretching a thin, diffusely re-
flecting mylar membrane over an array of piezoelectric pushers spaced at an
interval of 1.25 mm. A cross sectional view of the wall construction is given in
Figure 1. Because each of the peizoelectric elements could be driven indepen-
dently, proper adjustment of the phase and amplitude of individual drive wave-

*Supported by the Office of Naval Research Contract N00014-82-C-0199
tONR Contract N00014-82-C-0199



forms provided stationary or traveling surface waves programmable in direction,
amplitude, frequency, and in the case of traveling waves, wave speed. Details of
the entire active wall program are being presented elsewhere (l] and the remaind-
er of this paper describes the electrooptical displacement sensor and subsequent
measurements performed on the active wall.

Piazoelectric
i Element

Figure 1. Illustration of Piezoelectrically Driven
Active Wall.

PRINCIPLES OF OPERATION

The methodology used for the measurement technique is an adaptation of a
technique developed by the author to profile roadway surfaces from a moving
vehicle t23 and is illustrated in Figure 2. Two variations of the method can be
implemented by choice of light source: a 1 mw Helium-Neon laser operating in the
visible red at 633 nm or a high power (100 mw) light emitting diode (LED) opera-
ting in the near infrared at 933 r. In both cases the light source is 100%
amplitude modulated at a frequency of 5 kHz for use with phase sensitive detec-
tion so that a high signal-to-noise ratio and rejection of ambient light can be
achieved. For the infrared version, the LED is modulated directly by the drive
current, and for the visible red version, an acousto-optic modulator is used to
modulate the laser. The light source is projected onto the target surface by a
lens assembly oriented normal to the target surface to form a spot In. in diam-
eter, a spot size small enough to resolve individual piezoelectric elements.

A portion of the light scattered from the diffusely reflecting target sur-
face is collected by a receiving lens assembly oriented at 450 to the target sur-
face. The lens assembly images the illuminated srot onto the center of a two
element PIN photodiode detector with unity magnification. This target surface
position, denoted as POSITION I in Figure 2, is the reference (or zero), position
about which displacements are measured. At this position, the spot image is
exactly centered on the two detector halves thereby causing the outputs of the
two halves to be equal. By virtue of the 450 geometry, a positive or negative
displacement of the target surface from the reference position causes a corres-
ponding lateral shift of the spot image on the face of the dual detector. An
example of a negative displacement is shown as POSITION 2 and is represented by
the dashed lines for the target surface, light path, and spot image on the dual
detector. Shifting the image of the spot on the face of the detector causes more
area of the spot to fall on one half of the detector than the other, thus pro-
ducing unequal outputs. The displacement signal is extracted by computing the
difference and aum of the outputs of the two detector halves, then dividing the
difference by the sum. The difference between the two detector halves as the
image of the spot in translated from one detector half to the other, (beginning
with the spot completely one half), is simply the difference in areas of a circle
divided by a chord. The function is "3" shaped, with extremely good linearity
for mall displacements about center.

2
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The sum of the two detector half outputs is a constant with respect to spot
position and contains spot intensity and diameter information. The difference
function is also influenced directly by spot intensity and diameter which is un-
desirable, as errors in the displacement measurement will occur if factors in-
fluencing spot intensity or detector sensitivity (e.g. LED or laser brightness,
target surface reflectivity, water path attenuation, temperature, etc.) are vari-
able. As the intensity and diameter data appear in both the difference and sum
function, dividing the difference by the sum cancels errors associated with vari-
able intensity or sensitivity. This method assumes uniform intensity within the
spot, and no difficulties were encountered with nonuniform illumination or re-
flectance in this application. For details on a distance measurement system
based on a similar principle but with provisions to cancel errors associated with
nonuniformly reflective surfaces, the interested reader is referred to the system
developed for profiling roadway surfaces [2].

A block diagram of the signal processing electronics for the displacement
sensor is given in Figure 3. Design of the circuitry is straightforward and
models the foregoing signal processing algorithm. A 5 kHz crystal controlled
oscillator is used to drive the light modulator and to act as reference for the
phase sensitive detectors. The outputs of the two detector halves are individ-
ually preamplified and filtered through active 5 kHz bandpass filters. DC re-
storation is accomplished through phase sensitive detectors and subsequent ampli-
fication by DC amplifiers. The DC voltages thus obtained (denoted by El and E2)
are proportional to the light values impinging on each detector half. El and E2
are then processed by the differential and summation amplifiers and the resultant
difference and sum are fed into the Y and X inputs of the analog divider.
The quotient is (EI-EI)/(EI+E2) and is taken as the displacement signal after
high frequency noise component are removed by an active low-pass filter. The
signal processing circuitry was packaged in a compact (12 cm x 18 cm x 25 cm)
enclosure and was completely self-contained. The light source, lens systems, and
detector assembly were mounted on a precision XYZ fixture for positioning over
selected areas of the active wll.

Specification for some of the component parts implemented in the laboratory
system are as follows:

LED Source- Type TIES12 (Texas Instrument)
0.91 mm (0.036-inch) diameter
50 mw @ 933 rm

LED Projection lens 72 m focal length
Assembly: 50 mm diameter

Detector: Type PIN Spot-2D (United Detector
Technology) two element discreet
active surface: 2.54 x 2.67 m (0.1 x 0.105-in.)

Detector Lens 47 mm focal length
Assembly: 45 me diameter

Laser source: Helium-Neon Type
Spectra-Physics
model 138, 1.0 mw @ 633 na

Laser Modulator: Acoustooptic Type
Anderson Labs Model PLM-SVS
40 mHz center acoustic frequency
100% square wave modulation @ 5 kHz

SENSOR CALIBRATION AND FREQUENCY RESPONSE

The electrooptic displacement sensor was calibrated with a fixture con-
structed specifically for the task. The calibration fixture was fabricated by
using a precision micrometer and ball configuration in conjunction with a 10:1
mechanical reduction arm to provide precise ontrol over the reference surface.
Thus 0.010-inch (254 1Am) of travel on the micrometer head (which was readable to
0.0001-inch or 2.54 m) produced 0.001-inch (25.4 um) of travel at the reference
surface. Precision ball bearings were used for the fulcrum.
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Figure 4 is a typical response plot of the displacement sensor taken with the
calibration fixture. The fixture was immersed in a transparent water tank for
this test, with the reference surface set 15 cm from the entry point of the light
beam. The infrared LED was used for the light source and the spot projection was
directed into the tank normal to the top wall surface. The received light was
collected through the adjacent tank side wall by the receiving lens which was
oriented at 450 to the tank side wall. This resulted in a water path angle of
320 by virtue of refraction at the water/air interface. Linearity and resolution
over the 25 in peak-to-peak range is extremely good, as evidenced in Figure 4.
Responsivity of the displacemenmt sensor in this configuration was measured to be
61.58 pm/volt.

6

|(PM) 0

.6 SLOPE I.U pm/V

-10 -

-0.2 -0.1 0 0.1 0.2
OUTPUT VOLTAGE

Figure 4. Displacement Calibration For Electro-Optical
Sensor

Calibration data were taken in a total of four different configurations: in
both air and water, and with both LED and laser light sources. The laser source
has three distinct advantages and two distinct disadvantages for this applica-
tion. First, the laser provides a much more intense source of light and operates
at a wavelength which has little loss in water. The LED source, at 933 rm, is
attenuated by the absorption band in water near 944 n, presenting a signal
strength problem for long water path distances. Second, the laser can be focused
to a much smaller spot on the target surface, providing superior spatial resolu-
tion. The LED source cannot be focused efficiently to a spot much smaller than
the physical diameter of the active area without incurring significant losses in
intensity. Finally, the He-Ne laser operates in the visible red (as opposed to
IR for the LED), making alignment of the system an easier task.

The disadvantages of using a laser are expense and stability. Most commer-
cially available lasers in this power range, although relatively inexpensive in
themselves, cannot be directly modulated. An acousto-optical modulator was used
to provide the required 5 kHz subcarrier, and the cost of the modulator was more
than that of the laser itself. Secondly, the laser must have a stabilized output
relatively free from the noise components associated with the intermodulation
products of multiple optical frequencies. These products commonly occur in the
frequency range of I to 100 kHz, which is in-band to the 5 kHz subcarrier fre-
quency. The noise components appear as sidebands about the 5 kHz subcarrier
frequency and thus cannot be filtered easily. The analog division process re-
moves most of the amplitude modulated noise components, but improvements in sig-
nal to noise ratios can be gained through the use of stabilized lasers.

The frequency response of the displacement monitor was measured by inserting
an analog multiplier between the detector preamplifier and the remainder of the
signal processing electronics. Light input to the detectors was held constant
while the frequency of an external oscillator connected to the control input of
the multiplier was varied. The frequency response curve is given in Figure 5 and
shows reasonably flat response out to about 60 Hz with a roll off of approxi-
mately 8 dB/octave after the breakpoint. Response of the displacement sensor is

5
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an adjustable parameter and is controlled by the Q of the 5 kHz bandpass ampli-
fier, design of the output low pass filter, and (somewhat) on the selection of
carrier frequency.

ACTIVE WALL MEASUREMENTS

Actual measurements made on the prototype active wall are given in Figures
6, 7 and 8. In Figure 6, the amplitude response of an individual element of the
active wall is plotted as a function of applied driving voltage at a fixed fre-
quency of 40 Hz. Figure 7 shows the frequency response of the same element
plotted as a function of drive frequency for an applied voltage of 150V peak-
to-peak. For both Figure 6 and 7 the raw data obtained from the displacement
monitor was corrected by the amplitude and frequency response calibrations of
Figures 4 and 5. Figure 8 shows the longitudinal phase response of the active
wall when set up to produce a traveling wave. The data were taken by translating
the displacement monitor along the length of the active wall (transversing from
element to element) at a fixed standoff distance. The wall demonstrated excel-
lent phase linearity over a distance of approximately 30 mm (1.2 in.).

CONCLUSIONS

In summary, a methodology for producing noncontacting displacement measure-
ments through air and water path distances to surfaces possessing very small
absolute displacements has been described. Actual measurements have been per-
formed on a piezoelectrically driven active wall with successful results.
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AN OPTICAL TECHNIQUE FOR MEASURING THE FLOW-INDUCED
MOTION OF A COMPLIANT SURFACE

M. GadI-elHsnk

Flow Research Company
Kent, Washington

ABSTRACT

The flow-induced motion of a compliant surface was measured using a novel
remote optical technique. The "Laser Displacement Gauge" employs a Reticon camera
equipped with a linear array of 256 photodiodes spaced 25 micron apart. A verti-
cal beam of laser light produces a bright spot when it intersects the elastic or
the viscoelastic compliant material, which contains minute amounts of Rhodamin-6G
fluorescent dye. The axis of the photodiode array was aligned with the vertical
laser beam. Thus, the digital output resulting from the continuous scanning of
the array indicates the vertical displacement of the compliant surface. The
system has a frequency response of I kHz, and resolves vertical displacements as
low as 0.002 cm. The device was used to measure the characteristics of two
classes of hydroelastic instability waves that form on elastic or viscoelastic
compliant surfaces as a result of the interaction with a turbulent boundary layer.

1. INTRODUCTION

The motion of a fluid over a surface which complies to the flow offers the
potential for a rich variety of fluid/surface interactions. Compliant surfaces
are currently finding many engineering applications such as sound absorption in
aero-engines, vibration reduction in Naval vessels, and noise shielding in sonar

arrays. Moreover, intensive research is currently conducted to find compliant
surfaces that will reduce the skin-friction drag on moving vehicles.

The design of a compliant coating to achieve a particular objective is a com-
plex task requiring the determination of the surface response to a specific flow
disturbance. This response is excited by the hydrodynamic forces and results in
a surface motion which in turn acts on the flow field near the interface. Waves
that form on the compliant surface can be either stable, unstable or neutral.

There exists a need for the development of reliable techniques to measure

the compliant surface response under a variety of flow conditions. The device
needed should be accurate, have a fast response, and not interfere with the
observed phenomenon. Very few such devices exist today. Grosskreutz I1I used a
Schlieren apparatus to measure the motion of a homogeneous but nonisotropic

compliant surface made of rubber and subjected to a turbulent boundary layer in a
water tunnel. He computed the frequency and the wavenumber dependence of the
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flexibility of the compliant wall using the third-octave-spectra of the surface
motion. Ash et al. (2] used a similar Schlieren method to provide flash photos
of a compliant surface deformation in a wind tunnel. Dinkelacker et al. [33
placed a 97 mm pressure transducer containing several hundered membranes under a
turbulent boundary layer. The device served as the mirror in a Michelson inter-
ferometer. High speed photographs of the fringe patterns in the interferometer
were used to compute the dimensions and the speed of convected turbulent pressure
fluctuations. More recently, Rathsam et al. [4] measured the "pre-instability",
microscopic surface motion on a PVC plastisol in a turbulent boundary layer.
Their laser/optics system sensed the instantaneous slope and the frequency of
motion on the compliant surface where a focused laser beam was reflected. This
device is incapable of directly measuring the amplitude of the surface motion,
however, Rathsam et al. inferred the amplitude from the measured slope spectra by
assuming a dispersion relation for the compliant surface response.

The remote optical technique presented in this paper is used to measure the
flow-induced motion of a compliant surface. The technique is particularly suited
for studying hydroelastic instability waves that form on an elastic or a visco-
elastic compliant surface as a result of the interaction with a turbulent boundary
layer. The waves' amplitude, wavelength and phase speed are directly measured
with this linear device.

2. EXPERIMENTAL EQUIPMENT AND PROCEDURE
2.1 The Laser Displacement Gauge

The laser displacement gauge (LDG) is a remote optical device used in the
present investigation to measure the compliant surface vertical displacement.
The technique was originally developed for measuring wind-waves [5,61. Its first
use for measuring compliant surface deformation was reported by Gad-el-Hak et al.
[7,8]. The system employs a Reticon camera (Model LC 600V) driven by a controller
(Reticon Corporation, Model RS605). An optical interface is created at the
surface of the compliant material, which contained minute amounts of Rhodamin-6G
fluorescent dye, by projecting a 4 Watt vertical beam of argon-ion laser (Spectra
Physics, Model 164-05) having a diameter of I nun. The displacement of this
optical interface is measured by electronically scanning the photodiode array
housed in the Reticon camera.

The axis of the photodiode array is aligned with the vertical laser beam
above the fluid/compliant coating interface. The optical interface is imaged onto
the photodiode array via a set of lenses and extension tubes. The linear photo-
diode array is composed of 256 elements spaced 25 Jim apart. The aperture width of
the array is also 25 Pm. the spatial resolution, which is the same in both the
vertical and longitudinal directions, depends on the field of view. For example,
the spatial resolution is 0.01 cm for a field of view of 2.5 cm. In this case,
the horizontal spatial resolution is only about one-tenth of the diameter of the
laser beam. The scanning rate of the array ranges from 0.4 to 40 ma. The LDG is
a digital device with practically no electronic drift. The digital output from
the controller is a time series of integers from 1 to 256 updated at a frequency
of the scanning rate. Each integer corresponds to the nth photodiode on which
the optical interface is imaged during each scan. The digital output is recorded
and analyzed on-line with a NOVA minicomputer system.

Calibration of the LDG is made by displacing the Reticon camera, which is
fixed on an accurate traverse mechanism, to several vertical positions with
predetermined increments. A second-degree polynomial is best-fitted through the
calibration points to account for nonlinearity resulting from the aberration of
the optical lenses. The ratio of the coefficients of the nonlinear and linear
terms was typically 10-4. For practical purposes, the displacements may be
considered to be linearly porportional to the LDG output.

The Reticon camera is mounted so that it looks down onto the compliant sur-
face at a nearly horizontal angle. This arrangement minimizes blockage of the

10



optical interface by the wave crests between the laser beam and the tank wall on

the side where the camera is mounted. This blockage occurs most often near the
troughs of the waves, where the wave profiles are relatively smooth. Whenever a
blockage occurs, the photodiode array loses its object (i.e. the optical inter-
face) and the maximum diode number of 256 is registered by the controller.
Therefore either a sharp jump or a sharp spike, depending on the duration of the
blockage, appears on the measured wave profiles. To remove the sharp jumps or
spikes the computer was programmed to replace them with a straight line that
connects the points before and after each jump or spike.

In the present experiments the laser displacement gauge was set to have a
frequency response of 1 kHz and to resolve vertical displacments as low as
0.002 cm.1 The surface deformations were also recorded using a 16 mm movie
camera moving with the plate (Section 2.2). For the elastic surface, the camera
was mounted to the side to capture a side view of the instability waves; while for
the viscoelastic surface a top view was more suited to observe the instabilities
developing on such a surface.

2.2 Flow Facility

The Flow Research 18-m towing tank was used in the present experiments. The
1.2 m wide, 0.9 m deep water channel has been described by Gad-el-Hak et al. 19].
To generate a turbulent boundary layer, a flat plate was rigidly mounted under a
carriage that rides on two tracks mounted on top of the towing tank. During
towing, the carriage was supported by an oil film which insured a vibrationless
tow, having an equivalent freestream turbulence of about 0.1 percent. The
carriage was towed by two cables driven through a reduction gear by a 1.5 hp
Boston Ratiotrol motor. The towing speed was regulated within an accuracy of
0.1 percent. The system was able to achieve towing speeds between 20 and
140 cm/sec for the present study. The flat plate used in the present experiment
has an aluminum frame that provided a flat bed for the Plexiglas working surface.
The gaps in the aluminum frame were filled with lightweight styrofoam and the
frame was painted with marine enamel to prevent corrosion. The whole structure
was buoyant in water and was flat to within 0.2 -m. Care was taken to avoid
leading-edge separation and premature transition by having an elliptic leading
edge and an adjustable lifting flap at the trailing edge. The flap was adjusted
so that the stagnation line near the leading edge was located on the working
surface. The working surface was smooth and was 210 cm long and 106 cm wide. A
45 cm by 95 cm well was built into the working surface for placing compliant
materials of up to 1 cm in thickness.

Trips were used to generate a fully-developed turbulent boundary layer. The
trips were brass cylinders with 0.32 cm diameter and 0.25 cm height placed 20 cm
behind the leading edge, and having their axes perpendicular to the flat plate.
During towing, the plate and the movie cameras moved at a speed UCO, while the
Reticon camera and the vertical laser beam were fixed in space.

2.3 Compliant Material

A nearly-ideal elastic compliant surface and an incompressible viscoelastic
one were used in the present investigation. The elastic coating was made of com-
mercially available Knox gelatins. The gelatin powder was dispersed in boiling
water, followed by the addition of an equal amount of room-temperature water.
The concentration of the gelatin was varied in the range of 1 to 6 parts of
weight of gelatin per 100 parts of water. The mixture was poured into the well
in the flat plate and allowed to gel for 16 hours before using for a maximum of 8
hours, then a new coating was formed for the next series of runs. Care was taken
to insure that the compliant surface was smooth and flush with the rest of the
Plexigas working surface.

1The field of view is then about 0.5 cm.
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Whenever a new coating was poured, a 0.6 cm x 10 cm x 10 cm sample was
produced from the same mixture to measure the modulus of rigidity, G. The shear
modulus of rigidity was measured with an automated strain gauge/LVDT device which
subjected the sample to a prescribed shear force and the displacement was mea-
sured. The force versus displacement curve was always linear in spite of the
fact that displacement as high as 50% of the thickness were used. The modulus
value was quite sensitive to small differences in the mixing process and rangid
in value from 400 dyne/cm2 at the lowest concentration used to 25,000 dyne/cm
at the highest concentration.

The viscoelastic coating used in the present investigation was a plastisol
gel made by heating to 160*C a mixture of polyvinyl chloride resin (PVC), dioctyl
phthalate (plasticizer), and dibutyl tin maleate (stabilizier). The mixture was
poured in a heated aluminum pan and allowed to cool gradually to complete the
gelation process. The pan was then placed inside the well in the working surface
of the flat plate and its height was adjusted from the bottom to insure a flush
smooth surface. Unlike the gelatin, the PVC plastisol solidified rather quickly,
particularly when the percentage of PVC in the mix increased.

Several recent studies have used similar PVC plastisols to study their
interactions with laminar and turbulent flows [10-16]. In the present experi-
ments, the modulus of rigidity of the PVC plastisol was varied in the range of 50
to 125,000 dyne/cm2 by changing the percentage of PVC from 3 to 25 percent in
the mixture. The stabilizer was always 10 percent of the PVC by weight. To check
the viscoelasticity of the plastisol, a dynamic test was conducted on a sample
using the strain gauge/LVDT device. A shear stress was applied until the system
came into equilibrium, and the stress was suddenly released. The value of the
subsequent strain was observed using the LVDT and a Nicolet digital oscilloscope
(Model 4094). The observed time history indicated that the plastisol could be
modeled as a viscoelastic solid of the generalized Kelvin type (17]. The time
constant of the plastisol decreased as the percentage of PVC in the mix increased.
For the 3% plastisol, the relaxation time was about 1 second, indicating a rela-
tively strong damping. Since mechanical properties of the material change con-
siderably during gelling, the compliant surface and the sample were allowed to
sit in air for 16 hours before testing and using in the tank. Typically a
coating was used for 8 hours before a new one was formed for the next series of
tests.

3. RESULTS

The slowest travelling free wave speed on the surface of either an elastic
or a viscoelastic solid is given approximately by th tranaverse wave speed
ct C1/PO, where C is the shear modulus of rigidityl and p5 is the density of
the solid. Whenever the free stream velocity, U., becomes sufficiently large com-
pared to ct, unstable waves appear on the solid surface. The onset speed of the
two classes of hydoelastic instability was determined from the Reticon camera
records and from visual observation of the compliant surface. The results for
different moduli of rigidity and different thicknesses are shown in Fig. I. For
a particular coating thickness, the onset of instabilities on the viscoelastic
coating is generally observed at higher ratios of the onset speed to the trans-
verse wave speed than for the elastic coating. For both coatings, Uonset/ct
decreases as the thickness, d, increases. In other words, thick surfaces are
more susceptible to the hydroelastic instability than thin ones.

Typical examples of the instability waves on the elastic and the viscoelastic
coatings, as recorded by the Reticon camera, are shown in Fig. 2. Both coatings
have a thickness of d , 0.32 cm and the freestream speed was Um a 80 cm/sec. The

27or an elastic solid, the shear modulus is real; whereas for a viscoelastic

solid it is complex end frequency dependent, the real part is the shear storage
modulus G and the imaginary part is the shear loss modulus C'.
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modulus of rigidity for the elastic coating was G = 740 dyne/cm 2 and for the visco-
elastic coating was G - 50 dyne/cm 2 . A well defined average wavelength and ampli-
tude are apparent. The elastic waves have smaller wavelength and amplitude as
compared to the waves excited on the viscoelastic surface. The peaks of the waves
on the viscoelastic coating are sharp and the valleys are shallow and broad; while
the elastic waves are more or less symmetric. The waveform on the viscoelastic
surface appears to be non-sinusoidal with higher harmonics phase-locked with the
fundamental wave.

In the viscoelastic coating case, small amplitude waves always grew very
rapidly to large amplitude; consequently, a wave train of small amplitude could
never be recorded. With the elastic coating at low flow velocities, small
amplitude waves existed. The growth mechanism for the two kind of instabilities
appears to be different.

The average wavelength was measured from the cin& films. By averaging over
several frames, the statistical scatter of this random phenomenon was reduced to
a standard deviation of less than 202. For both the elastic surface and the
viscoelastic surface the wavelength has a strong dependence upon the depth of the
coating and upon the flow speed as shown in Figures 3(a) and 3(b), for five
elastic coatings and five viscoelastic coatings, respectively. The elastic waves
are generally shorter than the viscoelastic waves, indicative of the two different
types of instability. The wavelength increases as the flow speed and the coating
thickness increase for both coatings. However, a maximum wavelength is observed
for each of the five viscoelastic coatings. The flow speed at which this maximum
is observed coincided with the appearance of a three-dimensional wave structure
superimposed on the normally two-dimensional viscoelastic waves. As the velocity
continued to increase, small irregularities along the wave crests seemed to spawn
new crescent shaped waves downstream. As these additional waves appeared over
the viscoelastic surface, the average wavelength decreased as seen. No similar
phenomenon was observed for the elastic coating at the speeds achieved in the
present experiments.

The data of Figures 3(a) and 3(b) are normalized with the thickness, d, and
the transverse wave speed, ct, and are replotted in Figures 4(a) and 4(b).
Scaling the wavelength with the thickness reduces the range of the elastic coating
data but does not appear to collapse the data, suggesting that another length
scale may be relevant to the problem. For the viscoelastic coatings, the data
collapses reasonably well for the two-dimensional waves, while the three-
dimensional wave data do not collapse.

The average peak-to-trough amplitude, 2A, was computed from the Reticon
camera's output. The results are shown in Figures 5(a) and 5(b) for the elastic
coating and the viscoelastic coating, respectively. The peak-to-trough amplitude
for the waves on both surfaces increases monotonically with both the thickness
and the flow speed. The elastic waves data do not collapse when the amplitude is
normalized with the coating thickness, while the viscoelastic waves scale with
the thickness indicating, perhaps, that the maximum amplitude is limited by the
thickness. However, confidence in this result should be tempered by the limited
amount of data in the figure.

As mentioned before, very few small amplitude waves were ever observed on
the viscoelastic coating. No measurable surface deformation was observed as long
as the velocity was below the onset speed, and immediately above the threshold
velocity, waves with amplitude of typically 2A/d = 0.5 appeared. With the elastic
coating at velocities near onset, small amplitude waves existed. The growth rate
for the two waves is evidently different.

One of the greatest differences between waves on the elastic and the visco-

elastic coatings is the phase speed. The phase speed c was determined from
the record of the Reticon and the movie cameras using the relation:

X P(U. - cp

14
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where A is the wavelength measured from the cing films, P is the period measured
from the Reticon camera's record, and Um is the flow speed. As shown in
Figures 6(a) and 6(b), the phase speed for the elastic waves are between 25 and
50 percent of Um. As noted by the error bars, there is some uncertainty in the
data. Nevertheless, it appears that the phase speed for the elastic waves is a
constant percentage of Uc independent of Uw/ct. On the other hand, the visco-
elastic waves have an extremely low phase speed compared to other characteristic
velocities in the fluid. The maximum value of cp for these waves was 5 percent
of Uo. For the waves on the viscoelastic surface, the phase speed increases as
the flow speed or the thickness increases. The dependence on flow speed appears
to be given approximately by a power law:

Cp - Um

4. DISCUSSION

A solid in vacuum can sustain free surface waves that may be modelled as a
linear combination of waves having displacements perpendicular to or parallel to
the propagation direction. These are called transverse and longitudinal displace-
ment waves, respectively. For a linear-elastic solid, the propagation velocity
of the transverse waves is ct= and that of the longitudinal waves is
c= (A+2G)/Ps, where G and A are elastic constants and Ps is the density of the
solid. For a nearly-incompressible solid, A>>G and ce'. The free surface wave
dispersion relationship for a finite thickness solid has been reported by
Gad-el-Hak et al [8].

To determine the effects of the fluid motion on the compliant surface, the
analysis should be extended to include the surface stresses induced by the fluid
moving over the compliant coating. Some general aspects of this case have been
addressed by, among others, Benjamin [18,191, Landahl [20], and Kaplan [21].
Benjamin and Landahl have conducted stability analysis and have established that
three types of instability waves may exist. The first type, labeled Class A, is
an instability which is destabilized by the addition of dissipation or damping in
the system. Duncan at al. [221 have suggested that pressure phase lags transfer
energy from the flow to the interfacial wave system, thus stabilizing these waves.
Static-divergence waves, couonly observed on viscoelastic surfaces excited with
a turbulent boundary layer of sufficient strength, appear to be a member of this
class. The second type, Class B, is stabilized by damping and destabilized by
pressure effects, as for example in the case of wind waves. The third, Class C,
corresponds to a Kelvin-Helmholtz type of instability, where the waves grow or
decay primarily through reversible processes. Kaplan [21] has computed solutions
for specific cases.

Assuming that the surface stress of primary importance due to the fluid is
pressure, the effect of the fluid motion on the compliant surface can be simply
modelled by considering the basic flow over the coating as inviscid and unsheared,
and hence using potential flow theory to determine the surface pressure in terms
of the surface displacement. Duncan et al. [22] have recently explored the
dispersion relation for a one-layered, viscoelastic solid. The pressure applied
at the surface was a generalization of the potential flow solution to include
arbitrary amplitude reduction and phase shift. Their results are in qualitative
agreement with the present experimental data. In the case of a viscoelastic
coating with high damping, they find that the first instability occurring with
increasing flow speed is a damping instability (Class A) which has phase speeds of
a few percent of Um. When the damping is reduced sufficiently to approximate
an elastic coating, the first instability found with increasing flow speed is a
phase-lag instability (Class B) which has a much larger phase speed. Duncan and
Hsu [231 extended the one-layer analysis to determine the response of a two-layer
coating to pressure disturbances from a turbulent boundary layer.

Experimentally, conditions have been identified in which flov-induced defor-
mations occur on a viscoolastic compliant surface. Boggs and hahn [24] were the
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first to point to the existence of a large amplitude, spanwise wave structure on
a compliant surface/fluid interface due to the fluid motion. These "static-
divergence" waves3 appeared after the freestream exceeded an onset velocity
threshold. The term static divergence is derived from the analogous static-insta-
bilities that precede flutter on a flat plate exposed to a high speed flow [25,26].
In a series of experiments, Hansen & Hunston [10-131 and Hansen et al. [14,15]
established several quantitative characteristics of the static-divergence waves,
such as the conditions for their initiation, propagation speed and influence on
hydrodynamic drag. Gad-el-Hak et al. [7,8] presented definitive data on the
instabilities of a viscoelastic compliant coating.

No corresponding experimental data are available for Class B instabilities.
It is anticipated from the theoretical work of Benjamin [19] and others that
these instabilities may appear on compliant surfaces having little or no damping.
Hence, the use of elastic coatings in the present investigation was intended to
provide a data base for existing theories on the instability of elastic compliant
coatings. The experimental results presented in Section 3 agree qualitatively
with the theory by Duncan et al. [22]. The onset speed and the slow phase speed
observed for the waves on the viscoelastic surface are the same as that predicted
for Class A instability (static-divergence waves). On the other hand, the theory
predicts a much higher phase speed for Class B instability occurring on surfaces
with little or no damping. The phase speed of the elastic waves is an order of
magnitude larger than that for the viscoelastic waves as seen in Fig. 6.

5. CONCLUSIONS

The flow-induced motion of a compliant surface was measured using a novel
remote optical technique. Turbulent boundary layers were generated on a zero-
pressure gradient flat plate. The 2-m long plate was towed in the range of speeds
of 20 to 140 cm/sec in an 18-m water channel using a carriage riding on an oil
film. A well that covers 20 percent of the working surface was used for placing
the compliant material flush with the surrounding Plexiglas surface. The thick-
ness of the coating was varied in the range of 0.2 to 1.0 cm.

Two different compliant materials were used in the present investigation.
The first was an elastic gel made of gelatin and water. The second coating was a
viscoelastic plastisol gel made by the heating-induced gelation of polyvinyl
chloride resin, dioctyl phthalate and dibutyl tin maleate. The shear modulus of
rigidity of both coatings was varied over a wide range (50 to 125,000 dyne/cm

2 )
by varying the percentage of gelatin or PVC in the mix.

The vertical displacement of the compliant surface was measured using the
"Laser Displacement Gauge", which employs a Reticon camera equipped with an array
of 256 photodiodes spaced 25 microns apart. A vertical beam of an argon-ion
laser produced a bright spot when it intersected the compliant surface, which
contained minute amounts of Rhodamin-6G fluorescent dye. The axis of the photo-
diode array was aligned with the vertical laser beam. Thus, the digital output
resulting from the continuous scanning of the array indicated the vertical
displacement of the compliant surface. The system had a frequency response of
1 klz, and resolved vertical displacements as low as 0.002 cm.

Two different classes of hydroelastic instabilities were observed on the
elastic surface and on the viscoelastic surface. The onset speed for these
instabilities depends upon the coating's geometrical and mechanical properties.
The elastic surface instability has a relatively high phase speed and a small
wavelength, and its wave profile is symmetric as compared to the slow and highly
nonlinear "static-divergence" waves observed on the viscoelastic surface. The
experimentally determined wave characteristics compare qualitatively to existing
theories on fluild/compliant surface interactions.

3Class A instability.
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PRACTICAL REQUIREMENTS OF TURBULENT BOUNDARY LAYER FORCING

FUNCTION MEASUREMENTS WITH WAVE-VECTOR FILTERS

F. E. Geib, Jr.
David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryand

ABSTRACT

A discussion is presented on the use of wave-vector filters to measure the
pressure fluctuations that are produced on the surface of a body by the turbu-
lent boundary layer. Wave-vector filters allow the forcing function to be
examined in spectral space as a function of wave number and frequency. The dis-
cussion presents a summary of the techniques used in wave-vector filtering, how
these techniques are implemented with linear arrays of flush-mounted pressure
transducers, and the effects of changing various parameters. Practical problems
of making measurements with a linear wave-vector filter array are pointed out,
including the adequacy of facilities.

NOMENCLATURE

c - speed of sound
d - center-to-center spacing of transducers
f - frequency

- vector wave number
ki - components of vector wave number
ki - specific value of a wave number component
kc - sonic wave number
p - turbulent boundary layer pressure
D - diameter of sensitive area of circular transducer
L - a typical transducer dimension
N - number of transducers in a linear wave-vector filter array
R - radius of sensitive area of circular transducer

U - an arbitrary speed
Uc - convection speed of turbulent pressure fluctuations
U. - speed of body through fluid (or fluid past body)

IS(Mw)12 - spatial and temporal response of wave-vector filter

in Fourier space
w - radian frequency, 2wf
w' - specific value of radian frequency

#(Zw) - spectral density of turbulent pressure fluctuations
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1. INTRODUCTION

The degree to which the turbulent boundary layer (TBL) on the surface of a
vehicle is a noise source problem depends on how the various spatial and temporal
scales in the TBL match the spatial and temporal scales of the structure. Most
of the energy in the TBL is contained in that portion which convects along the
surface at a speed about 2/3 of the free-stream speed, the convection speed Uc.
While the pressure fluctuations in the convective region are quite intense,
their spatial and temporal scales do not match well with the scales of typical
large structures. In other regions, the pressure fluctuations are much weaker,
but the scales do match well with large structures and can be the dominant source
of structural response. However, all scales contribute to the TBL flow-noise
problem, and each situation must be examined to determine the importance of the
various regions of the TBL. In attempting to devise means of mitigating the
adverse effects of the TBL, it is desirable to have an analytical description
that can be used for making predictions. Turbulence is a nonlinear phenomenon,
however, and it has not been possible to generate analytical models from first
principles to describe turbulent pressure fluctuations. At present, semi-
empirical analytical models are used for prediction purposes.

Over the past 25 years, experimenters have generated a large body of data
on turbulent boundary layer pressure fluctuations [1,2]. Most of these data
have been obtained as a function of length and time or length and frequency, and
most of these data have been obtained for the convective region with its strong
signals. It is frequently more illuminating to study the problem in terms of
the Fourier transform variables, the vector wave number (or wave vector) t and
the radian frequency w [31. Very little data have been obtained directly as a
function of wave number and frequency [4-10].

Some numerical transformations of data to wave-number-frequency space have
been performed [11,121, but these transformations require assumptions that may not
be generally valid. The data used for these transformations were obtained using
two pressure transducers flush-mounted in a boundary at various separation dis-
tances. Cross-correlation and cross-spectral density techniques were used to
analyze the data. Because the magnitudes of the levels in the region of non-
convective wave numbers are so low, the data do not permit extrapolations into
these regions to be carried out with confidence.

Wave-vector filters provide a means of decomposing the turbulent boundary
layer pressure field directly as a function of the Fourier variables, wave number,
and frequency [3]. This paper will describe the wave-vector filter technique,
discuss some of its advantages, particularly for measurements in the non-
convective region, and discuss some of the problems that can be encountered.
Some discussion of facility requirements for making measurements in the region
of non-convective wave numbers is also included.

2. THE WALL PRESSURE FIELD

For a wall pressure field that is statistically homogeneous and stationary,
the cross-correlation of the pressures at two points on the boundary is defined
as

R(x,t) - (p(x',t') p(x'4'x,t'+t)>.()

where the brackets < > represent a time average, x is the separation distance
between the two points, and t is a time delay. The spectral density is obtained
from R(X,t) by taking the Fourier transform over space and time.

k,w) - (2w)- 3 ff R(x,t) exp[-i(k *-wt)] dx dt , (2)

where i = /1, k is the vector wave number, w is the radian frequency 2wf, and
the integration limits are from - to +-; unless otherwise stated, all inte-
grations will be from -- to +-. The inverse relationship is then
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R(x,t) - fff *1(k,w) expli(k-x-wt)] dkd 3

From equations (1) and (3), the overall mean-squared pressure at a point on the
boundary is simply

<p2(x',t')> - R(0,O) = fff -(k,.) dk d • (4)

Another quantity of interest is obtained from the Fourier transform of the auto-
correlation R(O,t),

t(w) - ff *(k,w) dk (5)

The quantity O(w) is the frequency spectrum that one attempts to measure by fre-
quency filtering the output of a single, flush-mounted pressure transducer. In
any measurement, however, the properties of the measuring instrument must be taken
into account. For example, rather than O(kw) or f(w), one actually obtains

Ot(k,w) = IS(k,w)1 2 O(k,w) , (6)

and

+ + +

= IS(kW)12 ,(k,w) dk (7)

where IS(k,w)12 describes the spatial and temporal response characteristics of
the measuring instrument.

Past measurements of R(x,t) have shown an approximate exponential decay in
both the xl and x3 directions, with the decay in the x3 direction being much
faster. The longitudinal correlations maximize at time delays corresponding to a
sp~d about 2/3 the mean flow speed. This implies that the conjugate function
O(k,w) should vary more rapidly with k, than with k3 and should peak at some
value of the frequency w. With the assumption of separability, the spectral
density should have a form somewhat like

I1 (k,w) = ffi (k1; w-kIUc) 03 (k3 ) , (8)

where Uc is the convection velocity at which the pressure fluctuations are car-
ried forward by the mean flow. The dependence on k3 should be symmetric and
slowly varying. The remaining discussion will concentrate on the more interesting
dependence on k I and w. The coordinate system is illustrated in Figure 1.

FLOW

k
2

Figure 1 - Wave Number Coordinate System
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The essential features of 4(kj,w) are illustrated in Figures 2 and 3.
In Figure 2, the curves represent isobars of the magnitude of 0(k,). The
line passing through the curves corresponds to w - klUc and represents the
convection speed. The magnitude of f(kl,() is greatest along this line. This
region of large magnitude for the spectral density is termed the convective
region. The line to the left in the figure corresponds to w = k1 c, where c is
the speed of sound in the fluid. If 8 is the angle between the kl-axis and the
direction of propagation of a wave traveling at the speed of sound, then the
trace wave number is ki - Iki cosn, where IKI - w/c. Thus, kl is always less
than or equal to w/c for acoustic waves. The spectrum for such waves will lie
along the sonic line if they are traveling in the kl-direction and between the
frequency axis and the sonic line, otherwise. This region is termed the super-
sonic region. (Properly, Figure 2 should show four quadrants, with a line at
w -klc in the second quadrant, and with quadrants 3 and 4 being the images
of quadrants 1 and 2, respectively. This would account for waves propagating
upstream and the fact that w can be negative.) The region in Figure 2 that lies
between the isobars and the sonic line is termed the region of non-convective
wave numbers, or low wave number region. This is a region of resonant response
for many vehicles of interest.

SUPERSONIC REGION

LOW WAVE NUMBER REGION~CONVECTIVE REGION

RELATIVE LEVELS

' Ak i  '

C U_ Uc

Figure 2 - Spectral Density Isobars

The variation in magnitude of 6(kl,w), as a function of kj at a particular
frequency w', is shown in Figure 3. The magnitude of 0(kl,w') in the supersonic
region -w/c 4 kl r w/c is unknown. Measurements in this region require an
extremely quiet facility, since the spectrum of any extraneous acoustic noise is
also in this region. If all extraneous noise in a facility traveled in the mean
flow direction, the spectrum for the facility noise would lie on the sonic line
in Figure 2 and would be seen as a spike at w'/c in Figure 3. Experimental
data for the low wave number region, w/c < k1 < w/U., where U. is the mean
flow speed, are limited but do indicate that the magnitude of the spectral dens- 4
ity is very small in this region [5-10]. The magnitude of the spectral density
is significantly higher in the convective region, near kj - w/Uc, and is the
region, therefore, about which most is known.

The determination of 0(k,w) cannot be carried out successfully with a single
flush-mounted pressure transducer. The output of the transducer will depend on
its wave number response in accordance with equation (7). The wave number
response of a single transducer is inversely proportional to its dimensions. If
the transducer is small enough so that its wave number response extends to values
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of kl > w/Uc, then the output will be dominated by the convective components.
On the other hand, if the transducer is large, it will respond much less to the
convective components but will not reject them completely. In both cases, the
output will also include sonic and supersonic contributions.

CONVECTIVE REGION

SUPERSONIC
REGION

LOW WAVENUMBER

REGION

C U_ U©

k
1

Figure 3 - Regions of Boundary Layer Pressure Field

As in Figure 2, only the region of positive k1 is shown in Figure 3. While
this is the case for a number of the figures in this report, one must keep in
mind that the negative region exists and that some of the functions are symmetric
about kl - 0. It is sufficient for much of the following discussion to use only
the positive kl-region for illustration. Proper interpretation, however,
requires a more thorough look at the functions in equation (7). For example,
had the spectral density been shown for -kl in Figure 3, the levels would have
been low and would not have shown a peak at -w'/Uc, since the spectral density
is not symmetric about kl = 0. For a small single transducer whose output is
dominated by convective components, the negative region is probably not import-
ant. For a wave-vector filter tuned to measure the spectral density in the low
wave number region, the magnitudes in the negative region are comparable to
those in the positive region and must be taken into account.

3. WAVE-VECTOR FILTER TECHNIQUE

In order to decompose the pressure field into its spatial and temporal
components as represented by the wave number and frequency variables, we need
an instrument that senses the energy in a frequency band centered qt some fre-
quency w' and in a wave number band centered at some wave number k1 . As
frequency filters are readily available, the problem centers on developing a
spatial filter with appropriate characteristics which are knoyn. Thq result
is shown in the schematic in Figure 2 by the bands labeled Au and Ak which
intersect at some point in the kl-w plane. If the bandwidths are sufkici-
ently small, the ouput of the combined system is the magnitude of the spectral
density at w' and k1 . An instrument specifically designed for this type
of measurement is termed a wave-vector filter.

Flush-mounted pressure transducers are used to perform the spatial Fourier
analysis of the signal. The output from the pressure transducers is then passed
through the frequency filter which performs the temporal Fourier analysis of the
signal.
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In principle, any device with spatial extent that responds to a pressure
excitation is a candidate as a wave-vector filter. In practice, the utility of
the device depends on one's ability to define that response. Arrays comprised of
condenser microphones [5,6,9,10] and mechanical structures comprised of thin
plates or membranes [7,8] are examples of instrumentation that have been used.
The sizes, spacing (for arrays), and other characteristics are carefully chosen
to provide the desired wave number response. Both types have been mounted flush
in the wall beneath a turbulent boundary layer and the outputs analyzed to infer
the magnitude of the spectral density. Reference 8 provides a discussion of the
use of membranes and thin plates as wave-vector filters. This report will con-
centrate on the use of linear arrays.

Figures 4 and 5 illustrate how the response function IS(kw)12 can be
tailored. Figure 4 shows the wave number response of a single flush-mounted
pressure transducer. The curve is for a circular sensing area with a spatial
sensitivity that is nonuniform across the sensing area. It is clear that the
single flush-mounted pressure transducer acts like a low-pass filter to wave
numbers. It senses all wave number components up to some value, and its response
decreases rapidly above that point. For discussion purposes, the first zero
will be used as the cutoff point rather than the 3 dB down point. The response
curve shown in Figure 4 decreases as Ii - 5 beyond the first zero. While the
response at the higher wave numbers is very weak, it is not zero. As equation
(7) shows, the output is the integrated product of the response function and the
field function. If the field is intense at a high wave number where the response
is weak, its contribution to the output can still be sufficient to dominate the
result.

R - 19.05 mm

-10

-70 _____________

I

1 10 100 1000 19,000

Ii 1li/n)

Figure 4 - Wave Number Response for Single, Circular Transducer
with a Non-Uniform Facial Sensitivity.

Figure 5 illustrates the response curve for a linear array made up of six
flush-mounted pressure transducers of the type in Figure 4 aligned in the k,-
direction. An identical response exists for -kj, due to symmetry of IS(k1,w12

about kI - 0. The total response for the array is the product of the single ele-
ment response and the sinusoidal response due to the multiplicity of elements.
The response of the large single element is utilized to reduce the mgnitude of
the array response at the higher wave numbers. The response curve in Figure 5 is

for an array with the signals added out of phase; that is, plus, minus, plus,

2



minus, etc. This produces a response curve for the array that is most sensitive
to wave numbers in a band centered at ± kl = w/d, where d is the center-to-
center separation distance between transducers. Note that the response is not a
simple pass band with sharp skirts as can be had with frequency filters. Rather,
the response is a complicated function having many lobes which exist over a wide
wave number range and which are fixed for a given set of conditions. Thus,
while we have achieved a device that responds best to particular bands of wave
numbers, it is at the expense of having a complicated response curve. In
essence, we have the spatial equivalent of a digital frequency analyzer. The
wave number l1/dI corresponds to the Nyquist sampling rate for the spatial
frequency. The single element response is the equivalent of an anti-aliasing
filter. Unfortunately, it is not a good anti-aliasing filter, and we have a
response existing at higher wave numbers that can lead to problems in the
interpretation of the data.

DIFFERENCE MODE

N - 6 d - 40.84 mm R 19.06 mm
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Figure 5 - Wave Number Response of a Linear Array

4. LINEAR ARRAYS AS WAVE-VECTOR FILTERS

The use of linear arrays as wave-vector filters involves a number of con-
siderations that must be accounted for when designing the array. Table I illus-
trates a number of factors that affect the wave number response.

Table 1 - Parameters Affecting the Wave Number
Response of Linear Arrays

1. Spacing of Transducers, d
2. Method of Summing Transducer Outputs
3. Size and Shape of Sensitive Area
4. Length of Array, Nd (equivalent to number

of transducers N, if d is constant)
5. Point Response of Sensitive Area
6. Shading
7. Dviations in Sensitivity and Phase
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4.1 Spacing of Transducers

Figure 6 illustrates the effect of spacing and method of sumuing outputs.
When an array is made up of a number of transducers spaced equally with center-to-
center spacing d, the equations governing that portion of the wave number
response due to the multiplicity of elements are the same as for diffraction
gratings. Major response lobes (grating lobes) occur at multiples of ± kid/w,
and minor response lobes (side lobes) occur in between. The magnitude of the
side lobes decreases and their number increases as the number of elements
increases. Since wave number is inversely proportional to distance, d must be
large to perform measurements at low wave numbers and smell to perform them at
high wave numbers. Measurements at very low values of wave number may require a
wave-vector filter array of impractical length, even if the number of elements
is not large. Conversely, measurements at high wave numbers may require such
small values of d that it is impractical to construct transducers that are
sufficiently small.

-DIFF MODE
....... SUM MODE N 4

-10

w

-30I II

-4 -2 0 2 4
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Figure 6 - Effect of Spacing and Method of Summing Outputs

4.2 Method of Summing Transducer Outputs

Figure 6 shows two curves obtained with different methods of suming the
outputs. A four-element array has been assumed. The dotted curve, labeled SUM,
is the response when the outputs of the array elements are added together directly
(in phase). This produces a main response lobe at ki - 0 and additional grating
lobes at even multiples of ± kld/w. The main response lobe is most sensitive
to plane waves striking the surface normally, since the trace wave number for
such waves is zero.

The second method of sumaing is the more valuable method when using the 3
array as a wave-vector filter to measure the TBL pressure field components. In
this mode of operation, labeled DIFF, the outputs of the array elements are added I
alternately out of phase, plus, minus, plus, minus, etc. This provides grating

lobes at odd multiples of ± kld/w. Note that the response at k1 - 0 is zero and
that there are nulls between zero and ± ktd/w. If a facility is designed
so that all facility noise travels in the flow direction (or in the negative
flow direction), then the nulls between 0 and ± k1d/w will be coincident
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with the sonic lines at some frequency. In principle, all facility noise can
then be cancelled.

It is also possible to steer the array to provide wave number response
curves between those shown in Figure 6 [13]. This can be accomplished by adding
time delays between the transducer outputs, or by adding phase shifts between
the outputs after they have been individually Fourier transformed, and then sum-
ming. This can be readily accomplished with a digital computer processing sys-
tem. The use of time delays allows one to steer the response lobe at klw/d,
for example, along the w - klc line. This technique, which is analagous to
sonar processing, allows one to investigate such phenomena as facility noise.
The resulting wave number response is frequency dependent, however, and one must
use a different response curve for each frequency of interest. The technique
of adding phase shifts to the Fourier transformed outputs of individual sensors
prior to summing yields a wave number response that is independent of frequency.
The curves shown in Figure 6 correspond to a phase shift of zero (SUM) and a
phase shift of w (DIFF). For phase angles in between, the wave number response
is not symmetric about kld/w - 0.

4.3 Size and Shape of Sensitive Area

The response illustrated in Figure 6 is not very useful due to the multi-
plicity of major wave number response bands. However, the effect of the finite
side of the transducer, as shown in Figure 4, can be utilized to reduce the
response of the lobes for wave numbers greater than ± k1d/w. The idea is to
choose the size and spacing of the transducers so that the first null in the
single element response curve of Figure 4 coincides with the main response lobes
occurring at ± kld/i. Since the total wave number response of the wave-vector
filter array is the product of the single element response and the grating lobe
response, the response lobes at ± 3kld/w will be cancelled, and all higher
lobes will be strongly attenuated by the single element response. The result is
a device designed to respond well to two bands of wave numbers and to respond
very weakly to facility noise. The response of a square transducer with a uni-
form response kernel is proportional to (sin L/L) 2 , where L is related to the
size of the transducer. The response at high wave numbers, relative to the
transducer dimensions, decreases as (klL) 2 . A circular transducer with a
uniform response kernel has a response proportional to [Jo(L)/L]2 . The
response at high wave numbers, relative to the transducer dimensions, decreases
as (klL)1-

3 .

4.4 Length of Array

The effect of increasing the number of elements in the array (thereby
increasing its length) is shown in Figure 7. The wave number bandwidth of the
main response lobes is inversely proportional to the total length of the array,
Nd. The effect on the main lobe at kjd/w of increasing the number of elements
from 2 to 12 for an array operating in the difference mode is evident. Signifi-
cant decreases in the bandwidth essentially require a doubling of the number of
elements, thereby doubling the length of the array. The table of numbers to the
right in Figure 7 show how the percentage bandwidth at k1 d/ decreases with
increasing N. Several practical problems immediately present themselves. A
very narrow wave number bandwidth will require a long array. The Farabee-Geib
measurements [6,9,101 using a spacing of 2.7 cm, and a percent bandwidth would
have required an array 5 meters long. Space for such a long array was not avail-
able. The cost for such an array would be prohibitive, and the experimental
difficulties would be immense. In addition, the boundary layer would be chang-
ing in thickness over the long distance. For laboratory measurements of the
TBL, practical wave-vector filter arrays lie in the range of 4 to 20 elements.
To date, measurements have not been made with linear arrays having more than 12
elements.

An additional advantage of increasing the number of transducers in the

array is a gain in the signal-to-noise ratio. The sensitivity of the array
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increases as 20 log N, while the electrical noise of the array increases as 10
log N.
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Figure 7 - Lfect of Number of Elements on Wave Number Bandwidth

4.5 Point Response of Sensitive Area

The graph in Figure 4 is for a circular transducer with a non-uniform
response kernel. The non-uniform response produces two effects, one desirable
and one undesirable. The response at high wave numbers depends on the derivative
of the point-sensitivity function at the transducer edge (5]. For the case
shown, the non-uniformity results in the desirable property that the response
decreases as (klL)-5 and, therefore, provides greater attenuation of convective
components. The undesirable property is an increase in the value of the wave
number for the first null. The effect of this is evident in the array response
curve shown in Figure 5. The null in the single element response did not cancel
the response lobes at ± 3kld/w even though the transducers were closely packed.
The transducers would have had to overlap for the single element null to have
cancelled the lobes at ± 3kid/w. This is a serious problem. It is quite
possible for the output of the array to be dominated by the response lobes at
± 3kld/W rather than the lobes at ± kid/w. It is mandatory to know the wave
number response of the wave-vector filter in order to properly interpret data.

4.6 Shading

Another factor that can be used to control the wave number response of the
wave-vector filter array is shading. Spatial shading, which is not illustrated,
is obtained by varying the separation distances between transducers. This type
of shading can be used to eliminate the grating lobes at the higher wave numbers.
There is, of course, a tradeoff. Spatial shading increases the amplitude of the
side lobes.

Amplitude shading is illustrated in Figure 8. This type of shading reduces
the magnitude of the side lobes at the expense of increasing the bandwidth of the
main response lobes. Various types of amplitude shading exist. Figure 8 illus-
trates binomial shading. The amplitude weights for this type of shading are
proportional to the coefficients of a binomial expansion. Binomial shading has
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the advantage of eliminating the minor response lobes (side lobes) that normally
occur between the major response lobes (grating lobes). Another type of shading
is Chebyshev which gives the narrowest major response lobe bandwidth for a spec-
ified minor response lobe amplitude.
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Figure 8 - Effect of Amplitude Shading with Binomial Weighting
on Wave Number Response of Figure 5.

4.7 Deviations in Sensitivity and Phase

Deviations in the sensitivities or the phase between transducers do not
affect the main response lobe very much. They do, however, strongly affect the
cancellation regions [14]. Figure 9 uses the sum mode of operation to illustrate
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Figure 9 -Effect of Deviations In Sensitivity on Cancellation.
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the effect of deviations in sensitivity of ± 0.5 dB from the ideal in a six-
element array using binomial shading. The theoretically infinite cancellation at
kld/r has been reduced to about 20 dB. Deviations of only t 0.1 dB reduce the
cancellation to about 35 dE. While not illustrated, deviations in phase of only
a few degrees between transducers have a similar effect. This represents a very
severe experimental problem. It requires knowledge of the differences between
transducers to a greater accuracy than one normally has to account for in acous-
tic experiments, if the beneficial effects of cancellation are a requirement.

Figure 10 shows how amplitude deviations of ± 0.5 dB affect the binomial-
shaded response curve of Figure 8. The total rejection of signals between 1 and
10 inverse meters has been reduced to about a 24 dB rejection. It is evident
that one must use shading techniques with care if they are being counted on for
cancellation of portions of the signal.
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of ± 0.5 dB when Binomial Shading is Used.

5. FACILITIES

One of the problems encountered when planning an experiment to measure the
TBL wall pressure field is the choice of facilities. This is especially true for
measurements in the non-convective region where the magnitudes of the spectral
density are very small. Air facilities are usually quieter than water facilities
and it is usually easier to work in air. However, Reynolds numbers are much
lower in air than in water and some experiments require water.

Figure 11 presents an example of the problems that can be encountered in
water facilities. The 36-inch water tunnel at the David Taylor Naval Ship R&D
Center (DTNSRDC) is a candidate for some type of measurements. Measurements in
the non-convective region would be very difficult in this facility. The back-
ground noise levels in the facility are high due to its basic construction and
the many pieces of machinery that are required for its operation. The background
levels are essentially speed independent up to 10 m/sec and increase at higher
speeds.
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Two curves showing predicted low wave number levels are also shown in Fig-
ure 11. The predicted levels are from an equation Farabee and Geib [6] fitted to
dimensionless data,

( 4k, w ) L  U 2x l O _ * 4  ( 9 )

q
2 6*3

where 0(k,w)L is the measured level for the spectral density in the region of
the predicted pressure levels because the two arrays have different wave number

responses. Cancellation techniques would obviously have to be employed in order
to reduce the effects of the background noise.
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Figure 11 - Predicted Low Wave Number Levels in Water for
Two Different 6-Element Linear Arrays.

Water tunnels do have advantages. Among these is the long time available
for data collection where conditions can be set and held constant. The advan-

tages could lead one to consider a facility such as the 36-inch water tunnel
even with the high background noise levels. A carefully planned experiment with
accurate amplitude shading might succeed.

Other water facilities exist at DTNSRDC and elsewhere. They range from
blowdown pipe facilities to water tunnels to buoyant body facilities. In addi-

tion to the background noise characteristics in these facilities, each has its
own set of limitations such as size, type of flow, and length of time for data

collection. Quiet buoyant body facilities, for example, can be found. However,
the instrumentation has to run remotely, and the data collection time may be

very short, leading to problems with statistical accuracy.
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6. CONCLUDING REMARKS

The intent of this report has been to provide an introductory overview of
the utilization of linear arrays of flush-mounted pressure transducers as wave-
vector filters to measure turbulent boundary layer pressure fluctuations. The
technique has been introduced and the dependence of the wave number response on
various parameters has been discussed. An attempt has been made to point out a
number of practical problems that must be considered when making wave-vector
filter measurements.

Wave-vector filters are a useful measurement tool. They act to Fourier
transform the spatial variable in the same manner that frequency filters act to
Fourier transform the temporal variable. The output of the combination is a
measurement that is a function of the Fourier variables, wave number and frequency.
This is quite useful since many analytical studies are carried out in Fourier
space, and direct comparisons can be made between predictions and measurements.
Wave-vector filters are not a panacea, however. There are many factors that must

be considered when designing an experiment that utilizes these devices. Design
tradeoffs and the interplay between parameters must be considered.

At the present time, we have only reasonably adequate knowledge of the TBL
pressure field for the convective region of spectral space. Our knowledge in the
other regions, which are regions of great significance for naval applications, is
insufficient. We need knowledge of the levels and the dependence on wave number
and frequency in the non-convective regions of spectral space. We also need know-
ledge of the dependence on boundary layer parameters. Wave-vector filters are
one of the better tools for obtaining this information.
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AN INNOVATIVE FAST FOURIER TRANSFORM ARRAY TECHNIQUE FOR ' ')W

WAVE-NUMBER MEASUREMENTS OF THE TURBULENT BOUNDARY LAY ER

FLUCTUATING PRESSURE FIELD

T. H. Hodpon and R. F. Keltie
Center for Sound and Vibration
North Carolina State University

Raleigh, North Carolina

ABSTRACT

The structure of the wall pressure field in a turbulent boundary layer as
described by the three-dimensional spectrum 4 (kl,k 2 ;w) continues to generate

considerable interest as a result of a variet of practical problems such as the
coupling of the large scale flow structure to structural modes, analytical model-
ing of acoustic problems associated with structural radiation and sonar detection,
and in the determination of controlling factors in turbulent boundary layer drag
and flow noise.

An innovative measurement method is described for the determination of im-
portant parameters in the longitudinal wavenumber, kl, and frequency, w, spec-
trum p(kl;w) of the wall pressure. This spectrum has a dominant convective
ridge of energy (basically hydrodynamic) with a considerably weaker region at
supersonic phase speed corresponding to sound radiation. To date the low wave-
number or low frequency part of the spectrum has created a difficult measurement
problem in that the energy levels are much lower than that of the convective

ridge and also because of the complicated relationship between frequency and wave-
number in this region.

The method presented, which is a significant improvement on previous wave-
number filter methods, uses a Fast-Fourier-Transform approach in both the fre-

quency and wavenumber domains. By use of a processed array of fifty trans-
ducers it is demonstrated that pressure spectrum measurements may be made at
higher resolution than previously reported in the literature, while rejecting the

convective pressure ridge by at least 60 dB and the sonic component by 30 dB.
This should lead to a more accurate measurement of the all important low wave-
number plateau region of the spectrum in nearly anechoic experiments.

1. INTRODUCTION

Properties of the fluctuating pressure field under a turbulent boundary
layer (TBL) flow have been studied to date for a period of over twenty years.
The study of the pressure field rather than the turbulent velocity field came
about from interest in the acoustic radiation generated by turbulent shear flows
over surfaces in general.
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As a result of the pioneering work by Townsend [I], it is now established
that turbulent boundary layers may be characterized by two length scales, namely
the boundary layer thickness 6 (or displacement thickness 6*) and the wall simi-
larity length scale v/u,, where v is the fluid kinematic viscosity and uT is the
mean wall shear velocity. The frequency of the wall pressure fluctuations may be
non-dimensionalized to form a Strouhal number using either of these length scales.
Over an intermediate range of wavenumbers of the turbulence the frequency spec-
trum of the wall pressure is known to depend on w* = w6*/U where U. is the flow
velocity at the edge of the boundary layer, while at high frequencies the fre-
quency spectrum depends on wv/u

2
T, see Willmarth [2]

The relation between wavenumber and frequency at intermediate and high wave-
numbers, order k16* ol, is relatively simple. Space and time fluctuations of the
pressure field are related by a convection velocity Uc in the longitudinal direc-
tion where Uc is a slowly varying function of k1 and w depending on the veloci-
ties of the particular eddies as they are positioned in the normal direction x 2
to the surface. An average value of Uc is = 0.8 U.. This convective "ridge" in
the k, wavenumber spectrum or frequency spectrum forms the dominant energy con-
tribution to the wall pressure field. However the low wavenumber or low fre-
quency part of the spectrum has always posed a great measurement problem particu-
larly in that the energy levels are much lower and also because the relation be-
tween wavenumber and frequency is much more complicated being strictly governed
by the Navier-Stokes equations. Although it can be argued that the large eddy
structure, i.e. low wavenumber, of the TBL pressure field is only weakly viscosity
dependent nevertheless the turbulent boundary layer as a whole is a complicated
feedback mechanism with the large eddy structure controlling the energy dissipated
at the wall. Thus this may explain why the wavenumber-frequency spectrum has not
been accurately modeled by analytical methods at this time.

One of the early controversies regarding the wall pressure description at low
wavenumbers was the nature of the aeroacoustic radiation mechanism from the TBL
pressure field over a rigid plane surface. Phillips, and later Powell, had pre-
dicted that the dipole radiation due to the wall pressure term in the Lighthill
aeroacoustic theory would be zero in the case of vanishing Mach number M.-O. Ex-
pressed another way, this would mean that the surface integral of the two-point
wall pressure correlation coefficient Rpp taken over the plane would vanish. This
might be regarded historically as the first major problem of understanding the TBL
pressure field at low wavenumber. The measurement difficulties likely to be en-
countered in this problem and the design of several quiet TBL flow facilities was
thoroughly discussed by Hodgson [3]. He concluded that it was never possible to
satisfactorily remove the effects of low wavenumber turbulence in a wind-tunnel
facility. Besides fan noise or nozzle noise, the small (but significant) acoustic
radiation from the TBL pressure field after reflection from other surfaces would
always cause problems for measurement at low wavenumbers. It is interesting to
note that even modern anechoic facilities still cannot completely reduce the
spurious large eddy, low wavenumber disturbances, see for instance Blake and
Chase [4].

Hodgson's solution to answering the Phillips-Powell controversy was to
measure the TBL pressure field on the wing of a high-performance sailplane (a
Schleicher Ka6R) where the conditions were truly free-field and where the pres-
ence of long wavelength turbulence in calm air was greatly reduced [5]. For a
mean pressure gradient close to zero, measurements of the spatial correlation
coefficients taken from reference 5 are shown in Figure 1 for the longitudinal
xl, transverse x3 and 450 directions. All three correlation measurements reduced
to zero value at large separations between the two pressure transducers, order
10 6*, thus demonstrating the very low level of extraneous low wavenumber distur-
bances present in the experiment. To within the order of experimental accuracy

the correlation area, corresponding to the k=0 case, did indeed integrate to zero
confirming the Phillips-Powell result of negligible dipole radiation at vanishing
Mach number M, (- 0.06 in the experiment). The corresponding frequency spectrum,
shown in Figure 2, illustrated two interesting results. Firstly there was an ex-
tensive "flat" region at low frequencies with a consistency of the data never
demonstrated in wind-tunnel results. Secondly these results, it is believed,
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demonstrated for the first time some characteristics of the true low wavenumber

portion of the spectrum in that a Fourier transform of the spatial correlation

curve of Figure 1 in the x, direction yielded a (kl) spectrum shown in Figure 3

which was not compatible at low k, with the low f&equency part of the frequency

spectrum. That is, because of the negative loop in the spatial correlation (re-

quired by the Phillips-Powell theorem), the O (k 1 ) spectrum falls at low kj. That

is there was no longer a simple convective relationship at low values of wave-
number and frequency.
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2. THE WAVENUMBER-FREQUENCY SPECTRUM

The three-dimensional wavenumber-frequency spectrum 0p(kl, k3 ; w) is the

Fourier Transform of the space-time correlation coefficient Rp (r1 , r3 ; T)

where rl and r3 are the spatial separations in the xl , x3 plane of the surface

and T is the time-delay between the two measurement pressure transducers. Recent

interest has concentrated on the spectral shape of ip, particularly Op(kl; W),

since it is required in analytical solutions associated with both plate radiation

and operation of sonar detection arrays. The nature of the 0p(kl, k3 ; w) spectrum

has been given by Ffowcs Williams [6,7] who extended the Phillips-Powell theory

to small but finite Mach numbers. He identified the two separate sound radiat-

irg and hydrodynamic components of the TBL pressure field while reiterating

Hodgson's experimental findings that any alteration in the acoustic environment

would dramatically effect the low wavenumber part of the Op spectrum, emphasiz-

ing again the careful controls that must be made in order to measure the spec-

trum accurately. Ffowcs Williams was the first definitive work which illus-

trated a op(kl;W) spectrum with a strong convective ridge (basically hydrodynam-

ic) and with a region of supersonic phase speed corresponding to sound radiation,

see Figure 4 taken from reference 6. To date there has been considerable theore-

tical study of the complete three-dimensional wavenumber-frequency stectrum, see

for instance Ffowcs Williams [7] and Chase [8]. In order to investigate the k3

direction, transducers could be placed transversely to the flow direction as in

reference 5. However, as Ffowcs Williams [7] has emphasized, actual quantita-

tive measurement of the low-wavenumber plateau or its definite shape has not

been achieved after some twenty-five years of study. So this paper concentrates

on the spectrum shape in the kI direction where for a predominantly low Mach

number flow most of the energy is concentrated around the kl, axis, see refer-

ence 6 and 7.
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Fig. 4. Typical TBL wall pressure power spectrum for a

predominantly subsonic flow, Ffowcs Williams
.ref. 6.
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Ffowcs Williams predicted that at low wavenumbers below the convected ridge
then the 0p(kl) spectrum integrated over all frequencies would vary as M2 below a
wavenumber of order M/6*. The low wavenumber portion of the spectrum was further
analyzed by Bergeron [9], in particular the apparent singularity avoided by
Ffowcs Williams at the acoustic critical wavenumber k - w/co where co is the
a-, • velocity. By using a finite plate analysis Bergeron effectively re-
m, ie singularity predicting a peak in the spectrum Op(kl) with amplitude of
or '216* with bandwidth of order 6*/Mi where Z is likely to be the shorter
o asion of the finite-sized plate. Thus it is possible to understand why the
Opkkl; wo ) spectrum at given wo is, following Maidanik and Eister [10], likely to
be of the form shown in Figure 5. The strong convective ridge is shown at
kI = w/Uc and the radiated sound peak at k, = w/co . The problem is to measure
this p(kl; w) spectrum, where it has been mentioned previously that in wind-
tunnels there is likely to be a problem around the acoustic peak due to radiated
noise in the tunnel (since the disturbances travel at co) as well as low wave-
number disturbances due to extraneous large wavelength turbulent disturbances.

Sp(k ; W)
p 1,0

to

0 >0

~0

C U0 
c

Fig. 5. Speculated wall pressure spectral density O(k1 ;u)
showing the contributions due to the convective
ridge and the radiated noise, Maidanik and Eisler
ref. 10.

Measurements of ,(k.; w) to date

Because of the problems at low wavenumbers referred to above, it seems that
the spatial correlation measurement methods used by Hodgson [5] and also by
Wills [1 were replaced in favor of a transducer array with signal processing so
as to directly produce a wavenumber (or spatial) filter. Maidanik has described
such filters which use relatively simple signal processing as "primitive" spatial
filters. An array using four transducers in the longitudinal direction was des-
cribed by Blake and Chase [4]. By alternating the phase of the transducer signals
and summing, it is possible to produce a bandpass wavenumber filter which is en-
hanced further by purposely choosing the transducer response to behave as a low-
pass wave-number filter.

More recent measurements by Farabee and Geib112] using a six-transducer
array in an anechoic wind-tunnel illustrate the method. Figures 6a, 6b show the
measured wavenumber filter response functions for the common and alternating
phased array (which incorporate the resolution characteristic of a single trans-

* ducer). For the case quoted from reference 10 the alternating phased array be-
haves as a bandpass filter centered at k16* 1.5. Although 0 (k,; ud) was not
measured, the frequency spectrum at this particular value of k16* (i.e. a "slice"
of the spectrum) was obtained which was felt to be 20 dB better in confidence than
the Blake and Chase results, the latter possibly being contaminated by wind-tunnel
noise
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Fig. 6. Measured wavenumber response of (a) a six-element common-

phased array and (b) a six-element alternate-phased array,
Farabee and Geib ref. 12.

Maidanik and Eisler [iq have given an overview of these "primitive" wave-
number filters suggesting the use of irregular spacing, array steering, weight-
ing or shading of the transducer signals and single transducer shading. Mention
should also be made of other measurements using flexible plates or membranes as
wavenumber filters by Jameson and Martin and Leehey [13, 14] as well as analyti-
cal work by Aupperle and Lambert on wavenumber filter action by beams [15].

In summary, to date, no overall measurement of the p(kl; w) spectrum at low
wavenumbers relative to the convective ridge seems to have been confidently made
at this time. Figure 7, with axes w* = w6*/Uc versus k* = k1 6*, is an informa-
tive plot in that it shows the areas of measurements made to date in the fre-
quency-wavenumber plane relative to the convective ridge and sonic line [16].
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posed measurement region.
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3. FT ARRAY MEASUREMENT OF THE Op(k, w) SPECTRUM

As described earlier, the measurement of the low wavenumber region of the
TBL wall pressure spectrum may be characterized essentially as the measurement of
,a relatively low amplitude signal in the presence of much higher amplitude signals.
That is, again examining Figure 5 for the spectrum 0 (kl; w() at given wo, the low-
wavenumber region is bounded at very low values by tRe sonic line and at the high
wavenumber extreme by the convective peak. Since the pattern is not truly frozen,
this convective peak has finite width and height, but is nevertheless of large
amplitude. The experimental solution to date has been to attempt to design a wave-
number filter that will admit data in the low wavenumber region and yet reject
both the sonic and convective components. Initial descriptions of this type of
array were first given by Maidanik and Jorgensen [17, 18, 19].

As mentioned previously, two types of arrays for which data have been pub-
lished are the common-phased array and the alternate-phased array. The responses
of such arrays for a flat transducer response are shown in Figures 8a and 8b
taken from reference 18. The first major peak of the common-phased array occurs
at kl = 0 while the first major peak of the alternate-phased array occurs at
k, = Nw/L where N is the number of transducers and L is the spatial extent of the
array. A key point in this approach is that the wavenumber response of the
pressure transducers is also used as a low-pass wavenumber filter in order to im-
prove the spatial filtering action and to further suppress the convective ridge.
This reduces all the response lobes except the first one, thus leaving it as the
dominant response lobe of the filter. For example, the array responses used by
Farabee and Geib [12] are shown in Figures 6a and 6b. Thus, the common-phased
array is a low-pass, spatial filter and the alternating-phased array is a band-
pass spatial filter. In both types, the highest side-lobe is only about 13 dB
down from the maximum response at the band-pass peak.

The technique proposed here is to also use an array of transducers, but with
a completely different signal processing methodology. Instead of electrically
summing the output of the transducers to form a single array output, the individ-
ual transducer outputs are kept distinct and used with a Fast Fourier Transform
(FFT) algorithm to produce a wavenumber spectrum. This method, which is outlined
below, is completely analogous to the transformation from the time domain to the
frequency domain by temporal sampling and the FFT algorithm as used in digital
frequency analyzers.

2W/d 4w/d 67F/d kd

(a)

i
W/d 3/d 5W/d k d

(b)

Fig. 8. Wavenumber response of the N point-transducer
equally-spaced wave-vector filter using (a)
common-phased elements and (b) alternate-
phased elements, Maidanik and Jorgensen ref. 10.
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The two key advantages of the spatial FFT method that will be demonstrated
below are:

1. the ability to measure different parts of the kl6* spectrum,
including the convective part and the low wavenumber plateau
simultaneously.

2. the ability to measure the low wavenumber portion while reject-
ing the convective ridge by at least 60 dB.

Theory

The theory underlying the spatial FFT method and implementation of the
technique will now be discussed, see Bendat and Piersol 120] for a more detailed
explanation.

Consider N transducers equally spaced at a distance h apart, aligned in the
streamwise, xl, direction. The outputs of these transducers, Pn(xn, t) represent
the spatial sampling of the wall TBL pressure field p(xl, t) at the points
xn = nh, n = 0, 1, ..., N-1. Each of these signals may be frequency analyzed,
either by analog or digital means, to yield the N outputs Pn(Xn, w). These sig-
nals may then be used as inputs to an FFT algorithm to transform from the (xl; w)
domain to the (kl; w) domain. As is well known from digital signal analysis, N
data points in space (or time) will yield N/2 independent spectral lines in wave-
number (or frequency). These spectral lines occur at the wavenumbers:

km m ;2 m 0, i..., 1 - (2)

Thus, an immediate advantage of the spatial FFT over the summed array technique
is that N/2 bands of information in wavenumber space are produced as compared to
a single band in the siumned array approach.

The highest wavenumber which is resolved is determined by the sensor spacing
b according to the relation

k (3)
max h

where k is the Nyquist or cut-off wavenumber. This constraint results from the
familiar sampling theorem due to Shannon which states that at least two samples
per wavelength (or period) are required to identify a sinusoid. The practical re-
sulr is that components of the pressure field with wavenumbers greater than kmax
cannot be resolved and fold-back or alias about kmax, resulting in a contamination
of the computed spectral estimates in the range OLkmax. One way to prevent this
is to choose the soacing h small enough so that there is minimal data in the range
k>kmax. Thus, spacins of the sensors is determined through estimates of the high-
est wavenumber component present.

The resolution or filter bandwidth of the N/2 spectral estimates is deter-
mined by the product of the sensor spacing and the number of sensors,

Ak - 2" .(4)

Thus, for a given value of h, as the number of sensors increases, the number of
spectral estimates also increase and the resolution bandwidth decreases. Of
equal importance to the filter bandwidth is the filter roll-off characteristics
of the FFT, and the control of this bandwidth is a major reason for the method
chosen. In the present application it is desired to have minimal contributions
from the convective peak in the spectral estimates of the low wavenumber region.

In FFT analysis, the filter roll-off is determined by the amplitude shading
or "window function" applied to the N data points. For the case of uniform shad-
ing, the window function is rectangular, and the basic FFT filter response is
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shown in Figure 9. The highest side-lobe level is -13 dB, with an asymptotic
roll-off envelope of 6 dB/octave. Note that the side-lobe level is comparable
to the summed array, but the roll-off characteristics are much more desirable.
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Fig. 9. The-basic FFT filter shape for the uniform or
rectangular window function.

Both the side-lobe level and the asymptotic roll-off may be adjusted by tapering
each end of the data window. For example, the FFR filter response using the
(cosine)2 or "Hanning" window is shown in Figure 10. The highest side-lobe for
this window is -32 dB with a roll off of 18 dB/octave, albeit at the expense of
increasing the bandwidth of the main lobe. This window is one of the most fre-
quently used in FFT frequency analyzers. It is the employment of this filter
function shape that will allow the spatial FFT to be a useful tool in examining
the low wavenumber region of the wall pressure spectrum.

WINDOW FUNCTION
I I I I I I I I I I I I I I i I I

0-

-20

-30 -

-60

-70

! I I I I I I I I I I I I I I I I I ,

-50 -10 -30 -20 -10 0 10 20 30 40 5C

Non-dimensional Wavenumber kL

Fig. 10. The FFT filter shape for the (cosine) or Hanning
t. window function.
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The primary parameters of importance in the array design are the sensor
spacing h and the number of sensors N. The basic constraint in the present
application is to fix the spacing h so that the convective wavenumber peak falls
within the analysis range; that is, the Nyquist wavenumber must be greater than
the convective wavenumber. If this occurs, then advantage may be taken of the dy-
namic range of the FFT to assure meaningful measurements at low wavenumber with
negligible contribution from the convective peak. Using the non-dimensional para-
meters kl* and w* the convective peak is given by

(k*)c = (k1 6*) = ,a (5)
i c Uc

Imposing the restriction, say that the Nyquist wavenumber is equal to 1.5 times
the convective wavenumber,the required sensor spacing is given by

7r 6*U
h = c (6)i. 5w*U.

Assuming a typical value of Uc/U = 0.8, the required spacing h is shown in
Table I for various values of 6* and w*.

Table I.

6* = 0.1" 6* = 0.25" 1 6* = 0.5"

w* I * =10 W* 1 w* 10 W* I i * 10

h .168" h = .0168" h = .419" h = .0419" h = .838" h = .0838"

Having determined the spacing based on the convective peak, the wavenumber
resolution obtainable is strictly a function of N, the number of sensors. Thus
the computed resolution is given by

3.75w* (7)
N

As an example, if N = 50, the resolution in terms of Akl* is equal to 0.075 for
W* = I and is equal to 0.75 for w* - 10.

Referring to Equation 6 and the example values of h presented in Table 1, it
is clear that the maximum w* that may be investigated with this technique is de-
termined by the transducer size. For example, assuming a representative value of
6" - 0.2", the employment of innovative strain-gage pinhole transducers used by
Hodgeon and Brooks (21, 22] would permit measurements to be made in the range
w* < 5. This bound exists since the transducers' wavenumber responses have not
been included in the above analysis, and the method described depends on the
transducer spacing being small enough to ensure unambiguous measurements in the
presence of the convective peak. Thus, the use of "large" transducers that
attenuate the convective peak offers the potential of relaxing the constraint on
the spacing, with the resulting increase in the range of w* that may be measured.
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X4. COMPARATIVE EXAMPLES

As an example of the characteristics of the spatial FFT process, consider
the case of N = 50 transducers with a streamwise spacing given by Equation (6).
From Equation (7), then, the spatial FFT will produce 25 lines in the k I spectrum
at the values k 16*/w* = m(O.075), m = 0, 1, 2 ... , 24. The spatial filter re-
sponse for the fifth spectral line, for example, is shown in Figure 11 as a
function of the parameter k,6*/w*. Note that the convective peak occurs at
k1,6*/W* = 1.25 and the sonic line occurs at k1 6*/w* = M., the Mach number of the
experiment. Considering a typical low speed test in air, the Mach number would
fall in the range 0.05 < M. < 0.1. Thus, as shown in Figure 11, the measurement
of the TBL wall pressure spectrum at kl6*/w* = 0.3 would attenuate the convective
peak by at least 70 dB, and the sonic line by approximately 40 dB.
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Fig. 11. Typical spatial FFT filter response in the low-wavenumber
~region of the TBL wall pressure spectrum using the pro-aposed measurement technique with N=50 transducers and the

i (cosi~ne)
2 
window function.

~As mentioned previously, the side-lobe levels may be decreased further at
[ the expense of increased main-lobe bandwidth. Figure 12, for example, shows the
&." spatial filter response at kl6*/w* - 0.3 using a (cosine)

4 
window function in-

, stead of a (cosine)
2 
window. The convective ridge is now attenuated by over

? 80 dB and the sonic line by about 50 dB. it should be noted that once the TBL
pressure field has been sampled by the N transducers and recorded, multiple
passes through the FFT algorithm may be made using any window function desired.

i Thus, the data may be analyzed repeatedly in order to obtain the maximum confi-
• dence in the spectral level measurements. Based on the design of sonar arrays,

which are guided by introducing time delays between transducer signals, it might
be expected that the above side-lobe rejections might not be achieved in prac-
tice due to transducer amplitude and phase errors, see for instance Quazi [23].
However, under laboratory conditions and using modern analog-digital techniques,
it is standard practice to store the individual amplitude and phase calibrations
of each transducer in digital memory and so avoid these errors. This is indeed
so for the two-channel case which has made the two-microphone acoustic intensity
meter a standard measurement instrument.
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Fig. 12. Typical spatial FFT filter response in the low-wavenumber
region of the TBL wall pressure spectrum using the proposed
measurement technique with N=50 transducers and the (cosine)
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window function.

Summarizing, as other workers using arrays have found, there must be a
compromise made between resolution of k* and w*, see Figure 7. However, as shown
above, the FFT processed array has great advantage over previous methods. An
approximate estimate of the measurement region in the (k*; w*) plane provided by
this approach is also plotted in Figure 7. In a practical case with the quoted
examples of 6* = 0.2" and w* i 1 then capacitive transducers of 0.125" dia.
would suffice for the chosen spacing, while for values of (,* 

= 
5 then a smaller,

pinhole strain-gage transducer would be required because of the closer spacing
to achieve the wavenumber resolution. The method, with up to fifty transducers
in the array, is particularly suited to digital data acquisition which is in an
advanced state of development as a result of rapid development in micro-
circuitry.
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USE OF RANDOM FORCES TO SIMULATE THE VIBROACOUSTIC RESPONSE OF
A PLATE EXCITED BY A HYDRODYNAMIC TURBULENT BOUNDARY LAYER

G. Robert and J. Sabot
Laboratoire de Mecanique des Fluides et Acoustique

An Associated Laboratory of the Centre National
de la Recherche Scientifique

Ecole Centrale de Lyon
Ecully, France

ABSTRACT

A set of N random forces whose spatial location and spectral density are
adjusted is proposed to simulate the wall pressure field beneath a hydrodynamic
turbulent boundary layer.

The different steps of the present study are the following

(i) Computation of the vibratory response of the plate (with simply supported
edges) using the analytical formulation proposed by Corcos of the wall-pressure
field cross-spectrum induced by a boundary layer. This computation is considered
as a reference case later on.

(ii) Determination by an approximate numerical method, of the coordinates and
the spectral density matrix of the N stationary random forces.

(iii) Comparison between the vibratory response calculated with the N random
forces and the vibratory reference response.

For a hydrodynamic turbulent boundary layer in the 2 to 10 m/s velocity
range, it is shown that the vibratory response of the plate is accurately repro-
duced by 5 random forces over a large frequency range.

NOMENCLATURE

a,b Plate dimensions

gl Scalar associated to the ith force

H mn(W) Modal frequency response function of the submerged plate

h Plate thickness

IB.L. (w) Boundary layer spectral density of generalized forces
mn
i
N
mn(W) Spectral density of generalized forces associated to the N

forces.
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N Number of forces

p Wall pressure

P Number of simulated modes

U, Flow velocity

Uc(W) Convection velocity

wAcceleration response

Wmn r) Mode shape function of the submerged plate

SFiFi(W) Spectral density of the i
th 

force

S pp() Spectral density of the wall pressure

wwr; Spectral density of the acceleration response of the point r

1. INTRODUCTION

In many naval structures, the vibroacoustic response induced by boundary
layers, wakes or jets, plays a vital role in limiting their ability to perform
an assigned function. For example, sonar self-noise limits its ability to detect
targets.

Because no appropriate anecholc water tunnel exists to experimentally
study such underwater noise problems, the main objective of this paper is to
provide the possibility of experimental investigations in a large water reservoir
with no flow, rather than in an anecholc water tunnel.

The particular fluid/solid system considered here is a thin rectangular
submerged plate excited on one side by a fully developed hydrodynamic turbulent
boundary layer. A set of N random forces, whose spatial location and spectral
density are adjusted, is proposed to simulate the wall pressure field beneath
the boundary layer, as represented in Fig. 1.

Fig. 1. Sketch of the proposed simulation.

2. EXCITATION-RESPONSE RELATIONS

If we assume the submerged plate to be a linear structure with time inva-
riant deterministic properties, the cross-spectral density of its acceleration
response w(&r;t) to a stationary random pressure p( ;t) can be written [I1]

SV12PP 12 1 1 22 2

wherl H(i(,4;w) is the frequency influence function of the submerged plate and
S p 2 ; w) is the cross-spectral density of the pressure field. When
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pp(Pl,02; W) is known, it is necessary to compute r ; w) to obtain the
response of the plate. This kind of computation is difficult because the fluid-
solid interaction leads to an infinite system of coupled equations, i.e. to
equations (2).

A simplified approach to this problem would be to neglect intermodal cou-
pling and then to assume that the eigenfunctions Wmn(r) of the submerged plate
are orthogonal. The response of the plate can be therefore written as follows

-* (W4j 
WS...rj):~Z (r) W Mi H (.)Hw 1u (L) (2)VV 1 2 mn Ik mn I jk 2 mn jk mnjk

where Imnjk(W) is the cross-spectral density between the generalized forces
acting on the modes m,n and j,k. If we assume that the plate is lightly damped
and that its natural frequencies are well separated, the cross terms in Eq. (2)
can be neglected and we obtain :

2

1v ' 2 mn mn I mn 2 mn mn

2.1. Response of the plate to hydrodynamic turbulent boundary layer

In this case, the spectral density of the generalized force acting on
mode m,n is :

5. ):J S P Uw (-P W (P) d P d P (4)

B.L.To calculate the spectral density Imn (W) it is necessary to have a
space-time description of the wall pressure beneath a turbulent boundary layer.
The modelisation of such a convected random field raises theoretical and experi-
mental difficulties, and only few attempts have been reported in the literature
[2], [3], [4], [5]. In flow-induced vibration problems [61 many authors have
used the analytical formulation of the wall pressure cross-spectrum suggested by
Corcos [2]. For a simply supported or clamped rectangular plate, Corcos' formu-
lation can be used to calculate the spectral density IB.L.(W). The results of
this calculation [71 show that IB.L.(w) exhibits a pea n value induced by a phe-
nomenon of aerodynamic coincidence (wave matchings between the pressure wave and
the flexural waves of the panel). This coincidence phenomenon does not influence
the response of the structure above a critical frequency defined by the equality
of the wall-pressure convection velocity and the flexural wave velocity. Below
this critical frequency the response of the resonant modes of the structure can
be enhanced by such a phenomenon.

In the present paper related to hydrodynamic problems, the flow velocity
is usually small (U. < 15 m/s), so that the hydrodynamic critical frequency is
small and lower than the first resonant frequencies of the structure. In this
situation one can use to calculate IBL'(u) the simplified formulation proposed
by Davies [8].

OJL. 22U'U 2-1
1 M S M W a bU M aalH+) 5)
were mn pp 1

where Spp(w) is the spectral density of the homogeneous turbulent wall pressure,
a b the area of the plate, Uc() a characteristic convection velocity, (1 and 02
the constants related to the spatial coherency of the pressure field. It is
important to notice that from Eq. (5), the spectral density of the generalized
force is the same for all the modes m,n.
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Analytical formulations of Spp(w), Uc(), alI and a2 have been proposed by
Robert and Sabot [9]. These formulations will be used in the various computations
presented in this paper.

2.2. Response of the plate to a set of N stationary random forces

N
If the N forces are not correlated, the spectral density Imn(w) of the

generalized force acting on the mode m,n can be written

NN -2

= ( ):E S (j W( P) (6)
mn ,:1 FF- manI

where SFiFi(w) is the spectral density of the force Fi(i = I to N) and pi is the
location of F1 on the plate.

The random response of the plate under the action of the N forces will be
the same as that observed under the boundary layer if

N 5L

I (W): I (W) for all modes m,n (7)
mA mn

3. SIMULATION OF THE WALL PRESSURE FIELD BENEATH THE TURBULENT BOUNDARY LAYER

From Eq. (7), one can deduce that in order to replace the wall pressure
field with a set of N random forces, one would have to solve an infinity of

equations to find only 3N unknowns, (N spectral densities and 2N cartesian

coordinates).

To overcome this difficulty,

i) we define a simulation which leads to a good representation of the
vibratory response of only a finite number of successive modes (P modes).

ii) we introduce the following form for the spectral density of the punc-

tual forces

2 -2
S (W) S (W) ") (8)

FF PP

where gi is an unknown constant. This choice is suggested by Eq. (5) and by the

purpose to define a simulation easy to use experimentally.

iii) we define a mean convection velocity among the F modes, as follows

-I P

U: P " Uc( ) (9)
J:1

where w is the natural pulsation of the Jth mode among the P modes.

Equations (5)-(9) lead therefore to the following approximate formulation
for the simulation N 2 - 2

IT b. W (P):K =1 top (10a)
i: I J I

q2: /K ( ab U axa/0i+ c?)]I (10b)
C Cl 2 1
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where K and bi are constants introduced for the numerical resolution. The simu-
lation will be interesting if it leads tc a good reproduction of the vibratory
response of a number P of the modes larger than the 3N unknowns (2N cartesian
coordinates for location of the N forces and N constants gi). In such a perspec-
tive, only an approximate resolution of Eqs. (10a) is possible.

The resolution used in this paper is described as follows

(a) in a first step, the plate surface is described by a finite number of points
(nodes of a rectangular mesh) and the auxiliary constants, bi, are selected from
a finite number of fixed values.

(b) in a second step, only one random force is considered (N - 1) and Eqs. (10a)
are approximately solved by ainimization of an appropriate cost function (least
mean square method). Values of K are then calculated from Eqs. (10a) for each
mode, and the amplification factors gi are deduced from Eqs. (lOb), where a mean
value of K is introduced.

(c) in a third step, the response of the plate to the previous computed random
force is compared to the response under the boundary layer.

d) in a last step, the results obtained are improved by the successive addition
of 1, 2, ... N - I forces and the corresponding computation of their locations
and auxiliary constants bi. Then, amplification factors gi are estimated as
above.

4. NUMERICAL RESULTS

The fluid/solid system considered in the present numerical study is defined
as follows

- the thin rectangular steel plate (a = 0.3 m ; b = 0.16 m ; h = 0.001 m) is
assumed to be simply supported on its four edges

- the fully developed hydrodynamic turbulent boundary layer is characterized by
its outer flow velocity U_ = 8 m/s and its displacement thickness
P = 1.92 x 10-1 m.

In order to compare the P modes simulated response to their response to the
turbulent wall pressure beneath the boundary layer, we have firstly computed the
spectral density of the acceleration response of the plate induced by the turbu-
lent flow. The result of this computation is shown in Fig. 2 (a) for a point
located in the central region of the plate (rl/a = r2 /b = 0.47).

4.1. Influence of the number of forces

The spectral densities of the acceleration response of the plate excited
by 1, 3 or 5 random forces are shown in Figs. 2(b), 2(c) and 2(d) respectively.
For these computations, we have chosen to reproduce the vibratory response of
the twenty first modes (P = 20).

It can then be observed that for N = 5, we obtain a good simulation, since
the difference between the response of the plate under the 5 forces and that
under the boundary layer is always less than 1 dB.

4.2. Influence of the test-point location on the plate

In order to know if the previous results are valid for other points of the
plate, we have computed the standard-deviation of the acceleration response for
five new points on the plate (rl/a = r2/b = 0.12 ; 0.27 ; 0.47 ; 0.65 ; 0.82).
The results obtained are shown in Fig. 3. It can be observed that the simulated
response is still near the response under the boundary layer for each one of the
selected points.
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Fig. 2. Influence of the number of forces :
a) spectral density of the acceleration response of the plate excited by a
turbulent boundary layer (reference response) ; (b,c,d) comparison between
simulated response and reference response (N = 1,3,5).
(Calculation conditions : P = 20, r2 /a = r.b = 0.47).

4.3. Influence of the flow velocity

It must be remembered that in the present method of simulation, the loca-
tions of the N random forces are not a function of the flow velocity. Only the
amplification factor gi applied to each one of the forces depends on the outer
flow velocity U.. This interesting property is illustrated in Fig. 4 in which
with the same location of the five random forces, we present the values of the
standard-deviation of the acceleration response of the plate for five flow velo-
cities. It can be observed that the simulation leads to very good results for all
the velocities investigated.

4.4. Influence of the number of modes

The present method is based on the approximate resolution of P equations
corresponding to the number P of modes for which we wish to obtain a restitution
of the vibratory response. In order to obtain information about the influence of
the parameter P on the simulated vibratory response, we have made computations
for three values of P (P - 15, 20, 24). The corresponding results are presented
in Fig. 5, which shows the difference between the simulated vibratory response
and the vibratory response of the plate to the boundary layer. It can be observed
that when P is increased, the quality of the simulation is also increased in a
larger range of frequencies.
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Fig. 5. Influence of the number of simuZated modes :
Spectral density comparison between simulated response and reference
response (a) P = 15 ; (b) P = 20 ; (c) P = 24.
(Calculation conditions : N = 5, r1/a = r/b = 0.47).

5. CONCLUSIONS

Numerical results obtained in this paper show that for a plate/hydrodynamic
boundary layer fluid-solid system, it is possible to substitute for the turbulent
wall pressure a limited number of random forces in order to obtain a good repro-
duction of the plate response over a large frequency range. For example with
only five random forces, whose spatial location and spectral density are correctly
adjusted, it is possible to reconstitute accurately the response of the first
24 modes.

The main advantage of the proposed method of simulation is that it is easy
to perform experimentally. This is so because : (i) the location of the forces
remains the same for all flow velocities investigated, and (ii) the spectral
density of these forces can be readily obtained by an appropriate filtering of a
white noise.
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MEAN FLOW EFFECTS OF THE LOW-WAVENUMBER PRESSURE
SPECTRUM ON A FLEXIBLE SURFACE

A. P. Dowling
The Univers1iv Engineering Department

Cambridge, United Kingdom

ABSTRACT

The Lighthill theory is extended so that it may be used to determine the
flow noise induced by a turbulent boundary layer over a plane homogeneous
flexible surface. The influence of the surface properties and the mean flow on
the sound generation is brought out explicitly through the use of a Green func-
tion. The form of the low-wavenumber wall-pressure spectrum on a rigid surface
with an arbitrary mean flow profile is determined. The effect of a coating
layer is investigated.

I. INTRODUCTION

The sound generated by a turbulent boundary layer is influenced by surface

flexibility and by the mean flow. We derive an expression for the low-wavenumber

wall pressure spectrum in terms of a Green function and non-linear sources. The

Green function brings out explicitly the influence of both the mean flow profile

and surface flexibility. Chase and Noiseux: [i investigated the influence of a

mean flow profile on the hard wall pressure spectrum. We extend that work to

include surface compliance and investigate singularities in the surface pressure

spectrum.

In underwater problems the Mach number of the mean flow is very small, and

for low wavenumbers the flow only has an appreciable effect for spectral com-

ponents whose surface phase speeds are nearly equal to the speed of sound. When

the flow profile over a hard surface is neglected Ffowcs Williams [2] found that

the pressure spectrum for these modes had a non-integrable singularity. Bergeron

[3] analysed this singularity in more detail and showed that it arose from a two-

dimensional form of Olbers' paradox because the turbulent source region is con-

Isidered to be of infinite extent and the sound field from each source element
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does not decrease rapidly enough for the integrated effect to be finite. In this

paper we include the effect of an arbitrary mean boundary layer profile. It is

found that this eliminates the singularity for all upstream propagating elements

but enhances it for downstream propagating elements. For these downstream propa-

gating components the singularity in the pressure spectrum is a double pole, and

is stronger than the single pole found for uniform flow by Ffowcs Williams. This

singularity is due to a 'trapped' mode, which propagates downstream supersonic-

ally in the boundary layer and subsonically in the flow outside it. The energy

in this mode therefore remains trapped near the surface and only decays slowly

with distance from the source. The influence of the boundary layer on these

sonic elements is found to depend only on the free stream velocity and the dis-

placement thickness of the boundary layer and to be independent of the details of

the mean flow profile. Dowling [4] modelled the effect of the flow profile for

long wavelength modes by a vortex sheet positioned at a height h above the sur-

face. Consideration of an arbitrary mean flow profile shows that the vortex

sheet result always describes the effect of a mean flow profile on the spectral

elements with sonic phase speeds (the only elements much influenced by the mean

flow), even when the boundary layer height is not small compared with the surface

wavelength. This is because modes with sonic surface wave speeds have infinite

wavelengths normal to the surface. In particular, by solving the problem for an

arbitrary mean flow profile, we find where the equivalent vortex sheet should be

positioned; at a height h above the surface equal to the boundary layer displace-

ment thickness.

The influence of a coating layer over a hard surface is investigated. It is

found that if the sound speed in the coating is greater than that in the fluid it

is possible for the coating to eliminate the singularity for downstream propagat-

ing modes. A coating with a low sound speed has an adverse effect on the surface

pressure and can even introduce new singularities into the wall pressure spectrum.

2. THE SURFACE PRESSURE ON A FLEXIBLE WALL

Consider a turbulent boundary layer flow over a plane, homogeneous, flexible

wall. In our problem the flexible wall is assumed to be only linearly disturbed

from its rest position Y3 - 0, and the mean flow U(y3) is assumed to be a func-

tion of Y3 only, as shown in Figure I. Far from the surface U(y3) tends to the

free-stream velocity U1 and U(O) - 0. The impedance is uniform over the whole

surface and the relationship between surface pressure perturbation p' and dis-

placement & can be conveniently expressed in terms of their Fourier transforms:

p(O~k,w) -Zkw~ku 1

where p(y3,kw) - p'(,T)e-i(wt+klYl+k2Y2)dyldy 2dt.
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Figure I The geometry of the flexible surface and turbulent boundary layer

We write the instantaneous particle velocity as {U(y 3),O,0) + U'. Then by
differentiating the equation of mass conservation with respect to time and sub-

tracting from it the divergence of the momentum equation we obtain:
32 _U

2
32 32(pU! ) dUa2T."

y- 2u--L _ 2 (pu) - c (2)
2 ayly. y3 SY I yiyj

L~
T.. = pu~u! + (p'-c1p')6.j - ij., a.j is the viscous stress tensor and cl is the13 13.13
unperturbed value of the sound speed in the fluid. Finally the mass equation
and 3-component of momentum equation can be used to eliminate div(pu') andI

a(pu3)/ay1 respectively to show that:

+ 3y2 y_ - + U V2p

U 2

T y- )aiaYj dY3 aYI3Yj (3

we solve this by introducing P(Y3 ,k,w) and T.. the Fourier transforms of the
13 2density perturbation and Tij respectively. For convenience we take P + T33/c

2

13 2as our variable. The equation for p + T33 /cl can be written in self-adjoint

form as:

2P+T33/c1  -:,2/c jk~ka%,~+ 2
3  a i 4TyT 2ik ( )tUk (4),O a3-+

where a and 6 are summed over ) and 2,

(Y+Vk1)
2  2 2 d2U k (dU 1

f(Y3 ,k,w) k ck-I 1  + dy .Uk- 2 dy) (wYUk07

and y - {(W+Ukl)2/C 2 - k2 1 with the sign of the square root chosen so that yjhas the same sign as w when y is real and Imy is negative when y is purely
imaginary.

Outside the boundary layer the flow is only linearly disturbed from the
free stream velocity {U1 ,0,0} and T.. - 0. Since the disturbances must either

decay at large y3 or be outward propagating sound waves,

-r - -iy1p for large positive Y3 (5)
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= {k is the limit of y as Y3 tends to infinity. Very
near the surface Y3 = 0 the flow is only linearly disturbed and p' - clp' The

linearised 3-component of the momentum equation and the surface condition (1)

then give:

PjW 2P . z 3P/ay 3  (6)

since U(O) is zero. pl is the mean value of density in the fluid.
We solve for p in equation (4) by introducing a Green function G(y3 ,x3 ,k,w)

which satisfies:
32r
2 + fG = 6 (y3-x3) (7)

3 3
Multiplying equation (7) by (p+T3 3/cl)/(w+Uk1 ) and subtracting from it the prod-

uct of G and equation (4) we obtain:

Fp+T33 /c 2 +cY2]

1( 1 1 G T 3 3  + 2ika 
(G 8+Uk W+Ukl w+Ukl a3

+T+33/cl 1 G G

The term at Y3 
f  

is zero if we choose a Green function G such that,

3G/Dy 3 + -iylG as Y3  (9)

Similarly insisting that G satisfies the surface boundary condition:

3G 3 G -+ on Y3 = 0 (10)

(U'(O) = dU/dy 3 evaluated at Y3 0) eliminates the contribution to (8) from

Y3 = 0. These two boundary conditions together with equation (7) completely de-

termine the Green function.

With this particular Green function, equation (8) gives the Fourier trans-
form of the surface pressure perturbation as:

p(O,) G k a k k T as +Y2T33  2ika 3G - )
f I w+Ukl w+Ukl 3Y3 a 3 d

We now have the surface pressure given explicitly in terms of a Green function

and nonlinear sources. It remains to calculate the Green function which we do by

the method used by Chase and Noiseux [1].

3. CALCULATION OF THE GREEN FUNCTION

G(y 3 ,x 3 ,k,w) can be expressed in terms of two solutions E(y3) and F(y3) of
the homogeneous equation:

2E
a-E + fE - 0 

(12)

where E satisfies the boundary conditiou -it infinity (9),

aE
ay3  iy1E for large Y3 (13)
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and F the surface boundary condition (10):

F + p on Y3 = 0 (14)3Y3

Since E and F are only defined to within an arbitrary constant we will choose,

E(0) = F(O) = 1 (15)

Then G(Y3,x3 ,k,w) is given by (see for example Morse and Feshbach [5]):

F(x3) E(y3)/W Y3 e X3G(y 3 ,x 3 ,k,w) ff (16)

E(x3 ) F(Y 3 )/W Y3 X3

where W is the Wronskian, F 9E/aY 3 - E aF/aY 3 , and is independent of Y3. We will

therefore evaluate W on Y3 = 0, where the boundary conditions (14) and (15) show

that:

W = E'(0) + U'(O)kl/w - plw2/Z (17)

E'(0) denotes the value of the derivative aE/ay 3 at Y3 = 0. Substitution for W

in (16) shows in particular that

E(y3)G(y3,0,k,u) = (18)
E'(O)+U'(O)kl/w-plw

2/Z

and the representation (Ii) becomes:
W~! kkTakBT 

+ Y 2T 3 3 3E 2ik aTa3 1
p(O,k,u) - - -E(Y 3) ' + _ - dy 3  (19)

E,(O)+Ut(O)kl/wpl2/Z J+Uk, ay3 w+Uk2  d

This is equivalent to Chase and Noiseux's equation (28) (see reference [I]), ex-

tended to take into account surface flexibility. It is in a particularly con-

venient form because the influence of surface flexibility is displayed explicitly

in the term Z.E(y 3), the solution to equation (12) with boundary conditions (13) and

(15), depends only on the mean flow profile and not in any way on the surface

properties. The effect of a change in surface properties can be investigated by

considering the function [E'(O)+U'(O)kl/w-pI 2 /Z]-1 for different surface imped-

ances. It remains for us to calculate E(y3).

E satisfies a linear second order differential equation (12) with the

boundary conditions (13) and (15). This can easily be solved numerically for a

particular mean flow profile. The results in Section 4 were obtained for a tanh-

velocity profile U(y3) = Ultanh(y3/6), where 6 is a measure of the boundary layer

height. To aid numerical integration the problem for E(y3) was cast into the

form of a non-linear first order differential equation for O(Y3). This technique

was used by Michalke [6] when investigating flow stability. O(Y3) is defined by:

E(y3) = exp[fo3 *(y3) dy] (20)

Then 0, d 3, satisfies

_02  - f (21)
dy3

with boundary condition 4(') -iyl. Rather than integrate over an infinite
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range the spatial variable was changed to z - tanh(y3/8). Then the eesulting

equation was integrated from z -I, where 0 is -iy1 , to z - 0, using a Runge-

Kutta-Merson method, thus determining *(0) = E'(0) as required in (19). These

values of E'(O,k,w) are used in Section 4.

In fact the dominant flow effect does not depend on the details of the

boundary layer profile. In order to see that and to interpret the results in

Section 4 we will derive an asymptotic form for E(y3) valid for low values of the

flow Mach number M = U1 /cl. In underwater applications M is of the order of 0.01

and this limit is justified. We write n = y3/6 , U(Y3) = U1V(n), sl = k1cl/w and

s2 = k2cl/w. For sonic and supersonic phase elements (s +s2  takes values of

order unity. 6 is of the order of the boundary layer height. We will not as-

sume that w6/c1 is small as in Chase and Noiseux's detailed calculations [1].

For a boundary layer of height 5 cm in water and a frequency of 5 kHz, w6/c1 is

about unity. When cast in terms of non-dimensional variables the problem for E

is:

d2E 2( 6 ~ 2 2
+ 62y 2E - E - 2MsI(I-V) +Ms 1 (I-V2)

dn
2 21 1

+ 1 (dV _ s d2 V] (22)(I+K sl) 2  dn ) I+I sl dn 2

We seek a solution for E as a power series in the Mach number M;

E(n) = EO(n) + MEi(n) + . Then

d2E0
dn 2 + (6yl) 2E0  = 0 (23a)

d2E 2
+ 6y2E1 -~ [ ) 2 1-V) - d2V SlEO (23b)

dn2 + (y 1)
2E =- dn2]

The solution for E0 , satisfying the boundary condition at infinity, is:

E0 (n) = Ae , where A is a constant. (24)

EI(n) is then the solution of an inhomogeneous second order differential

equation with constant coefficients and can be found in a straightforward way to

give: 2

Asle + 2 (S) e dS(2

where X(n) = (I-V(S))dS.
p

A can be calculated from the boundary condition (15), E(0) I, and then

E(p) is determined to order M. In particular this gives:

d-E (0) - -i6yI(I+MB) -IM E (0) + 2 __)X(O) (26)

where B - -2s Jf.dV + 2 X(S) e-2i6y 1S dS.Jo dS 1iJXS

Returning to dimensional variables we have:
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dE U' k1 61dY3 (0) = -iYI(1+MB) - U'(0) - - 2klwM - (27)

correct to order M. 61 is the boundary layer displacement thickness defined by

6I - J(|-U(Y3 )/UI)dY3- We have retained the order M terms in this expression

because it is possible for the leading term, -iyl, to vanish.

To lowest order in M, E(y3) e-iY1Y3 and the representation (19) gives:
D.D.

p(O,k,w) D i j e~iY1Y3 T..(Y 3 ,k,w) dy3  (28)
E'(O)+U'(O)k1 /w-p_1w

2 /Z f21

for modes with sonic and supersonic phase speeds. D = k for a - 1,2 andcs n

D3 = yl. The terms in the numerator cannot all vanish simultaneously and so we

have only kept the lowest order terms there. But in the denominator the leading

order term can vanish and so terms of order M must be retained.

The wall pressure spectrum can be derived from the Fourier transform of the

surface pressure in the usual way (see, for example, Dowling [4) for the details)

and is given by: t t
DD.DD r t

P(ku) i k k eYIYy3- 1YIy 3 T.jki(y3,y,k,u)dy3dy (29)
IE'(0)+U'(0)k /w_pW2/Z1

2

where the dagger denotes the complex conjugate and T is the cross-correlation
ijkk

of the turbulent sources:

TijkZ(y 3 ,y,k,) -fTij(Y,T)Tk(Y1+A1,Y2+A2,yiT+TO) e-kaza-iw Od2Mdo (30)

If the acoustic analogy has been successful in extracting the essential field

structure T ijk should be independent of compressibility effects. T ijk can

therefore be estimated on the basis of incompressible flow theory. We will non-

dimensionalize the integral in (29) and write:

feyI Y ly3- Yy3 Tij£(y3,y3,k,w)dy3dy 3 = PlU65lijkQ (61k,S1w/U1 ) (31)

Then the pressure spectrum simplifies to:
DiDDkD 2 35

SL k 2  31UlQik(61k,61w/Ul) (32)
Ptkt D ) I E ' (O ) + U ' (O ) k /0-/I2 / Z 

2

DijDkDD (0)+U'(O)kl/W-01W2/Z1- 2 describes how the turbulent field Q

radiates sound within the boundary layer over the flexible surface. The product

DYD D describes the propagation of the different directional elements, but themijk

main structure of the surface pressure spectrum comes from the

JE'(O)+U'(O)k 1/w-plw
2/ZJ-2 term.

In the low Mach number limit, equation (27) shows that:

E'(0) +U'(O)k 1/w-p1w
2 /Z - -iyl(|+MB) -2wkllM/c1 -pIW

2 /Z (33)

Without a mean flow profile and a flexible surface, E'(0)+U'(0)k1/W-p1 
2/Z-iy1 ,

which vanishes for spectral elements with sonic phase speeds. The mean flow

profile therefore has most effect on the pressure spectrum near yl - 0 where the
leading order term in (33) vanishes. Then the -iyiMB term is negligible since
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both Y1 and M are small and the dominant effect of the mean flow profile is con-

tained in the term -2wklSlM/cl. This was verified by numerical calculations for

a tanh-velocity profile Ultanh(y3/6). Integration shows that for such a mean

flow velocity variation the displacement thickness 61 is equal to log e2. The

values of E'(0)+U'(O)kl/u calculated numerically were compared with

-iyl-2wklSiM/c I for a Mach number of 0.01, w6/c I = 1, and good agreement was ob-

tained for a range of values of kicl/w.

The major effect, therefore, of the boundary-layer profile is independent of

the details of the boundary layer depending only on its integrated effect through

the displacement thickness 61 (- f!(1-U/U 1)dY3). We now see that the vortex

sheet analogy developed by Dowling [4] is able to describe the effect of a mean

flow profile on sonic or supersonic spectral elements for all boundary layers,

not just for boundary layers which are thin in comparison with the wavelength,

2ci/w, as suggested in that paper. We can understand this physically because

the main influence of the flow profile is on spectral elements with nearly sonic

phase speeds for which yi = 0, and these modes have infinitely long wavelengths

in a direction normal to the surface. In particular by including an arbitrary

mean flow profile and making no further approximations other than assuming the

Mach number to be small, we have found where the equivalent vortex sheet should

be placed. It is at a height above the surface equal to the displacement thick-

ness of the boundary layer.

4. THE WALL-PRESSURE SPECTRUM ON VARIOUS SURFACES

Equation (32) describes the influence of the surface structure and mean flow

profile on the wall-pressure spectrum. In this section the form of the pressure

spectrum is investigated for a couple of simple surfaces.

4.1 A Hard Surface

The normal displacement always vanishes on a hard surface and so Z is in-

finite. From (32) the surface pressure spectrum is given by:
t tD3D.DkD 2 3 5

P(k, w) - E(0)+U,(0)kl/I2 pUlSIQijk(61k,61w/Ul) (34)

IE'(O)+U'(O)kl/wl- 2 is plotted as a function of k1cl/w in Figure 2 for a flow

with a velocity profile U(y3) . Ultanh(y 3/6) and M = 0.01, w6Ic i = I. In order

to interpret these results we will consider the low Mach number limit.

Equation (33) gives:

E'(O) +U'(O)kl/w = -iyl(I+MB) -2.kl 1 iM/c I  (35)

correct to order M. The denominator in (34) is therefore small near Y1 = 0, but

it can only vanish when YI is purely imaginary. Then the first term on the

right-hand side of (35) is real and negative, and so from (35) E'(O)+U'(0)kl/w

only vanishes if w and k1 have opposite signs, i.e. for downstream propagating

modes. For upstream propagating modes E'(O)+U'(0)kl/w is always non-zero. The
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pressure spectrum therefore has a double pole near y1 = 0 for downstream propa-

gating spectral components, but it is always finite for upstream propagating

elements.

Y.
50"

40-

30-

20-

0
-10 1 i kC /W

-10-

Figure 2 Plot of Y = 20log10 E,(O)+U' (O)k/ vs non-dimensional wave number

for flow over a rigid wall with M = 0.01, w6/c 1 - 1, k2 = 0

The curve in Figure 2 clearly demonstrates that the predicted pressure

spectrum is larger for downstream propagating modes with sonic phase speeds than

it is for upstream propagating modes. Roebuck and Richardson (1981, private

comsunication) have observed this in underwater experiments.

Just as in Dowling [4] we can interpret the singularity for downstream

propagating spectral elements as being due to modes which are supersonic within

the slowly moving fluid in the boundary layer but subsonic in the faster moving
fluid outside it. The energy in these modes therefore remains 'trapped' near

the boundary layer, i.e. within a disk near the surface, and conservation of

energy then suggests that downstream of the source the pressure disturbance will

only decay like the inverse square-root of distance from the source, while up-

stream the disturbance will decay more rapidly. Hence the pressure decays more

slowly with distance downstream of a source in the boundary layer than in a uni-

form stream, and this accounts for the stronger singularity in the pressure

spectrum under an infinite region of turbulence.

It has been shown (Dowling [7]) that in the absence of a mean flow profile

certain coating layers can have a beneficial effect on the surface pressure spec-

trum. We now go to investigate the effect of a coating layer over a hard sur-

face.

4.2 A Coating Layer

We model the coating by a fluid layer of thickness T with density o and
sound speed c . A sketch of the coating layer on a hard surface is given in
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Figure 3. The impedance of the composite surface can be calculated in a

straightforward way and we find:

0 W
Z Z~.~-.cot yT (36)

where y - (2/c22_2 Thetrbutence whr s "s1-2•

pressure spectrum on the surface of

the coating x3 = 0 can then be ob-

o19C1  tained immediately from (32). In

X3 =0 fact the pressure spectrum on the

coong yr Cs hard surface is of more practical

interest since it can be compared

hard surface more directly with the pressure on

A coating layer over a hard the uncoated plate. The relation-

surface ship between the pressures on these

two surfaces is:

p(-T,k,w) = p(O,k,w) sec ysT (37)

and so the wall pressure spectrum on the hard surface is:

Isecy T12 DtDtD D (65

P(k,1) = k Z 3 5 (61ijkt( ,61w/Ul) (38)
IE' (0)+UI(0)kl/-~plw2/ZI

2 FP 1U16Qik

where Z is given in (36). IsecysTj2 IE'(O)+U'(O)ki/W-p1u2 /Z- 2 is plotted in

Figures 4 and 5 for different coating properties using values of E'(O,k,w) ob-

tained by numerical integration. We will explain these results by investigating

the low Mach number, thin coating layer limit analytically.

When cs >> fufT and M is small:
k1  PlW2 M +P1 2 2 2

E' (0) +U' (0) - - -
= 

-iy1 (I+MB) - 2wk 1 61 -+- -- T ki k2 T (39)
c1  Ps s (

This becomes small near Yi - 0, but can only vanish near there if:

plT /C2 k161
-c -1 2 - - > 0 (40)

Hence a coating with a sound speed higher than that in the surrounding fluid can

eliminate the singularity that occurs on an uncoated hard surface for spectral

elements propagating downstream with an approximately sonic phase speed. This

is seen clearly by comparing Figures 2 and 4.

The inequality in (40) shows that a low-sound-speed coating can have an
adverse effect and introduce new singularities into the surface pressure spectrum

for upstream propagating modes which would be finite for an uncoated hard sur-

face. This is illustrated in Figure 5. A comparison of Figures 2 and 5 shows

that the low-sound-speed coating has introduced a new singularity into the sur-

face pressure spectrum.
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Figure 4 Plot of Y = 201go8 W. vs non-dimensional wave
IE'(O)+U'(O)klIw-plw2/

number for a high speed coating layer over a hard surface. M = 0.01,

w6/cl = 1, wT/c I = 0.5, cs = 1.2cl, ps  i 1.2p1, k2 = 0
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Figure 5 Plot of Y = 20log10 vs non-dimensional wave

* mber for a low-speed coating layer over a hard surface. M - 0.01,

* w/c 1 - I, 'iT/c1 - 0.5, cs - 0.9Ci, PS - I.2p1. k2 - 0
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5. CONCLUSIONS

An expression for the low-wavenumber wall pressure spectrum under a turbu-

lent boundary layer has been derived in a way which brings out explicitly the

effects of the mean flow profile and the surface flexibility. It is found that

the hard wall pressure spectrum has a singularity for spectral elements that

propagate downstream with approximately sonic phase speeds, but that it is

finite for all upstream propagating modes. It is shown that a coating with a

sound speed greater than that of the fluid can eliminate the singularities in

the pressure spectrum for these downstream propagating modes, but that a low-

sound-speed coating has an adverse effect.

This work has been carried out with the support of the Procurement

Executive, Ministry of Defence.

REFERENCES

1. Chase, D.M. and Noiseux, C.F., "Turbulent wall pressure at low wave-
numbers: Relation to nonlinear sources in planar and cylindrical flow," Journal
of the Acoustical Society of America, Vol.72, 1982, pp. 9 75 -9 8 2 .

2. Ffowcs Williams, J.E., "Surface-pressure fluctuations induced by
boundary-layer flow at finite Mach number," Journal of Fluid Mechanics, Vol.22,
1965, pp. 50 7-5 19 .

3. Bergeron, R.F., "Aerodynamic sound and the low-wavenumber wall-pressure
spectrum of nearly incompressible boundary-layer turbulence," Journal of the
Acoustical Society of America, Vol.54, 1973, pp.1 23- 133 .

4. Dowling, A.P., "Flow-acoustic interaction near a flexible wall,"
Journal of Fluid Mechanics, Vol.128, 1983, pp.1 8 1-198 .

5. Morse, P.M. and Feshbach, H., Methods of Theoretical Physics, McGraw-
Hill, 1953.

6. Michalke, A., "On spatially growing disturbances in an inviscid shear
layer," Journal of Fluid Mechanics, Vol.23, 1965, pp.521 -54 4 .

7. Dowling, A.P., "The low wavenumber wall pressure spectrum on a flexible
surface," Journal of Sound and Vibration, Vol.88, 1983, pp.'1 -25 .

I
74



INFLUENCE OF DIRECTIONAL SURFACE IMPEDANCE ON
THE LOW WAVENUMBER PRESSURE SPECTRUM

A. J. Kell - -ki

Naval Underwater Systems Center
New London, Connecticut

ABSTRACT

Dowling has extended the Lighthill sound analog so that the flow induced
noise resulting from fluid passing over a compliant surface can be computed,
by knowing the compliant surface impedance as a function of the in-plane
wavenumber and frequency. The implementation of the complete theory requires,
as yet, unavailable experimental information about certain turbulent source
terms, consequently, results are given here in the form of a fluid pressure
spectrum multiplier, rather than the actual pressure spectrum itself. The
Dowling extension was previously applied to surfaces whose surface impedance
was dependent on the wavenumber vector magnitude but independent of the vector
direction. For slow mean flow field velocities, the computed pressure
spectrum multiplier likewise exhibits a similar independence on the wavenumber
vector direction. In this paper, surfaces which exhibit both a magnitude and
direction dependent impedance are examined and their influence on the shape of
the corresponding fluid pressure spectrum multiplier is investigated.

NOMENCLATURE

Ca acoustic sound speed of fluid (in./sec)
Cp backing plate flexure wave speed (in./sec)
Cm backing plate membrane wave speed (in.Isec)
Cd dilational wave speed in layer (in.lsec)
Cs shear wave speed in layer (in./sec)
Dij spectrum shape terms
D layer thickness (in.)

h turbulent boundary layer thickness (in.)
kl, k2  spectrum streamwise, spanwise wavenumbers (in. _
k magnitude of wavenumber vector, k = kli + k2 J, in.l)
ka w/ca, acoustic wavenumber
Mc compliant surface wall pressure spectrum multiplier
Mr rigid surface wall pressure spectrum multiplier
p fluid pressure (psi)
Po equation of state reference pressure (psi)

Qfije integrated turbulent source terms
R 11 +,U1 k1 1w) flow correction parameter
ul, u2, u3 solid layer velocity components (in./sec)
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T plate thickness (in.)
U1  streamwise, flow velocity (in./sec)
v , fluid velocity components (in./sec)
X1;kl'k2,,} surface displacement impedance = (wiZ (lb/in.3)
Z(kI,k 2 ,w) surface velocity impedance (p6u3) (lb-sec in.

3 )
00 at-rest fluid mass density ( b - ec2 /in.4)

layer mass density (lb - secl/in.l)
plate mass density (lb - sec2/in.4)

np1,np2,np12 plate damping parameters
ns~nd shear and dilatation isotropic damping parameters
W spectrum frequency (2wf) (rad/sec)

INTRODUCTION

In this paper, we address the problem of estimating the wall pressure
spectrum existing at the interface between a compliant surface and viscous
fluid, while a turbulent flow field of mean flow velocity, U1 , is passing
over the semi-infinite representation of the compliant surface. The
turbulence in the boundary layer existing at the deformable fluid-surface
interface generates sound components that are different than those present for
the sam flow, U1 , passing over a rigid surface. The notion that the sound
field generated by a turbulent boundary layer is greatly influenced by the
surface interface properties has been considered by Ffowcs-Williams (1). Some
of the early attempts at predicting the wall pressure spectrum, considered the
compliance, but not the compressibility of the fluid (2), while others,
treated the compressibility but not the compliance (3T. Dowling, S4),
extended the Lighthill sound analogy (5) and allowe or both compressibility
and compliance simultaneously while incTuding the effect of the mean flow
profile in the turbulent boundary layer. This last work is particularly
significant because the formulation is in a generalized form which permits one
to evaluate a candidate compliant surface and corresponding pressure spectrum
once the surface velocity impedance Z(kl,k 2,w), is defined as a function
of the streamwise and spanwise wavenumbers, k1 , k2 and frequency w. The
effect of the mean flow is described by terms appearing in the spectrum
formula having the form (1 + UlkI/w). In underwater applications, which
will be the central focus of this paper, the flow speed, U1 , is
substantially smaller than the acoustic sound speed, Ca, consequently for
sonic or supersonic spectral elements, (Ulkl/w) can be dropped in
comparison to unity. This approximation simplifies the analytical form of the
spectrum and Dowling, &51, has given guidelines regarding the expected
alteration of the pressure spectrum as a consequence of changing wave speeds
for a surface model consisting of an isotropic material (having zero shear
modulus) attached to a thin flexible backing plate.

In the work presented herein, the reference (6) Dowling compliant surface
model is generalized in the following respects:

1. the upper layer has different boundary conditions (selected as
options) in the streanmise and spanwise directions (e.g., slip vs
fixed base attachment conditions)

2. the upper layer has a non-zero shear modulus

3. the lower plate has membrane stiffness

4. the lower plate has optional directional material properties.
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A sketch of the different surface models is shown in Fig. 1, where various
boundary condition combinations can potentially be examined. The mixing of
unlike boundary conditions in the k1 , k2 , directions requires a three
dimensional solution for the surface impedance. The resulting surface
i~pedane wiT not depend on the magnitude of the wave vector number,
k = k1 + k2 alone but will depend on the individual components

k1 , k2 as well. For small Ulk I in comparison to w, the shape of the
pressure spectrum shape is not substantially affected by flow velocity, U1 ,
consequently distortions of the pressure spectrum will mainly be altered by
surface impedances, Z(kl,k 2 ) that depend on the direction and magnitude of
the wavenumber vector.

The remainder of the paper will concentrate on examining the manner in
which the above mentioned four modifications alter the shape of the pressure
spectrum.

WALL PRESSURE SPECTRUM

The central result of (4) is given in form of a wall pressure spectrum,
P(k,), which is applicable to compressible or incompressible flow, namely

P(w,w) =.. * P2 U3 h 5Q(ij = ki o 1 Qijkt (1)

where po is the at-rest acoustic noise density of the fluid, U1 is the
mean flow velocity, h is the boundary layer thickness, Dii is the term which
describes how the turbulent source terms, and Qijkg radiate sound within the
boundary layer over a compliant surface (usual indicial summation is implied
over repeated indices where indices take on values 1,2,3) and * denotes
complex conjugate.

The Qijki expression is a result of spatially integrating the spectrum
function rIijk, where this quantity is the Fourier transform of the
crosscorrelation of the turbulent sources.

!t 7
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Specifically,

~lki- ~ ~f ~J,(3.y, , )dy dy (2)
Qikl 2- -j f rijkI(Y3' Y" dY3 dY3
ij Po 1 J 2

with =j = H i H TkL(y 1 + Al, Y2 + 2' Y3  T+ *o)

(3)
-ik a -ilw0

e e da1 da2 d o

where H is a unit Heaviside function which is unity in the boundary layer and
zero elsewhere, al, A2, ro are shift dummy variables for the
correlation, over bar denotes an ensemble average and finally, Ti
represents the turbulent source terms employed in the Lighthill analogy.

Specifically, the source term is given by

T p P) 6..6 (4)
Tij = pvi vj 

+ ij - (P - Po
) a 6ij 4

where p is the fluid mass density, vi is the fluid particle velocity,
Pij is the compressive stress tensor, and 6ij is the Kronecker delta
function.

The details regarding the derivation of Qik- are rather lengthy and the
reader is referred to the source (4) for aditional details. The shape
factors, Dij are given by

= X- i[k ke R2] ao = 1 or 2

0 = X*L2 [k~i (5

033 Ec(,E R1 J

where X = iwZ, thus X =-iZ

Ec (', = iW2 y - pw 4 R2 + Pow4yh

and Y 2 k2]1 -
k 2

Here R is a parameter involving the effect of the velocity on the pressure
spectrum and is defined by

R - I + Ulkl/w (7) j
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The root of y is chosen so that when yo is real, y0 has the sign

of w and when y is purely imaginary (i.e., k > W2 /Ca), then the

imaginary part of yo is made positive. The root of y1 is picked
similarly, where y1 has the same sign as Rw when y1 is real and when Y1
is purely imaginary, the imaginary part of Y1 is made positive.

The surface impedance, Z(k,w), is defined as the ratio of the
surface-pressure perturbation, p - po, to the normal surface velocity u3
at wavenumber k and frequency w. The three dimensional impedance derivation
for the Fig. 1 layer-plate combination is lengthy and is treated in the
appendix section.

Absolute Evaluation

The absolute evaluation of the Dowling wall pressure spectrum given by
equation (1), requires that crosscorrelation of the turbulent source terms,
Tij be known in order to compute the Qijkl terms appearing in the spectrum
equation. In ji, it is suggested that the QijkI quantities should be
independent of compressibility effects and therefore can be estimated on the
basis of incompressible flow theory. This is no small task indeed. One
possibility for computing the Qijki terms would be to employ a large eddy
simulation computer of the type employed in reference {7), and employing the
detailed flow structure, compute the source terms defined by equation (4), and
subsequently compute the Qijkl quantities. An alternative experimental
approach would require measurements of the Tij source terms throughout the
three dimensional space within the boundary layer. This is a difficult task,
since 81 terms are needed to fill Qijkl array. Another question arises
regarding whether the Qijkt terms are only weakly affected by the motion of
the surface. If this is true, these integrated source terms could be
determined once for a flow over a rigid surface and reused in conjunction with
the Di- compliant surface terms to predict the spectrum. At this point in
time, 'here does not appear to be enough information available, experimental
or otherwise, to compute the full Qijkl expression.

Relative Evaluation

The next best approach would be to examine the multiplier, Dij Di,.
operating on the Qij~k terms in the equation (1) spectrum. The changes in
these quantities could be used to give an indication of trends in the pressure
spectrum. Searching for trends in all of the terms in the Dij Df
array is not practical. Instead, one can observe that all of the components
of the Dij array, have the term X* w2IEc(k,w) as a common factor.
Moreover, all of the information regarding the details of the surface
compliance is included in this expression (noting that the compliance
information is also affecting Ec(kw) since it is also a function of X*).
The compliant surface wall pressure multiplier then is defined as

M x= X (8)
*c 1  Ec (Ei )

and is used as a measure for comparing the relative effect of compliance on
the wall pressure spectrum from one compliant surface to another. A single
plot of Mc versus wavenumber is useful towards obtaining information about
the shape and potential singularities in the spectrum. It is noted that the
M multiplier is similar to the spectrum multiplier called, F, in reference
A_. An additional plot of the corresponding multiplier when the surface is

gid would be even more valuable towards sorting out potentially good
compliant surfaces from bad ones. The rigid multiplier, Mr, is obtained
simply by taking the limit as the displacement surface impedance X*0 in
equation (8) which results in the expression
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Mr =1  W (9)

2 + 2 y2 hR2where Er(kW) = i= Y1  yhR

The units of Mr are length, consequently it is convenient to
nondimensionalize Mc or Mr by dividing through by length scale, which is
selected as the acoustic wavenumber, i/ka = Ca/w. The plots of Mc or
Mr we intend to make are holding w = constant, consequently normalizing the
plotted quantity with respect to w creates no unusual distortion of the
function but rather places the shape multipliers in a range more desirable for
plotting purposes. Since the pressure spectrum is multiplied by Dij
k*, the Mc factor appears as a squared factor in the wall pressure

spectrum, consequently the quantity we finally display is (ka M )2 where
10 times the loglo of this quantity (or equivalently, 20 loglo Ika Mcl)
is actually plotted since the range of the multiplier spans several orders of
magnitude. Similarly, 20 loglolka Mr! is plotted for the rigid wall
pressure spectrum.

Consequently, log plots of Ika Mccompared to Ika Mrl will be
used to judge the effectiveness of a candidate compliant surface as measured
against the same flow over a rigid surface.

Spectrum Trends for Underwater Acoustics

In the case of underwater acoustics, the U1k 1 w << 1, therefore the
R factor is w1.0. Consequently setting R = I in equations (5-8) leads to some
substantial simplifications.

(i) Singularity Trends

After some algebraic manipulations, the multipliers can be
written in the form

M i 1 - (1Qa)Mc = ' 2

for k2 < k2

a

M r  (1b
V+ (yo0h ) 2 

YO

and (la

1 1

Mr  (11b)
(1 + y0 h)y b

so



where y=I rVk2- k~

Upon observing the above relations, it can be seen that the rigid surface
multiplier, M , has a singularity at yo = 0 and at jo = 0, i.e., k = *ka -

Next consider the case where the governing equations of motion for
the deformable body produce a surface displacement impedance X, that is real
and thus, X* = X (e.g., there is no complex phase angle between the surface
load, aP, and the corresponding displacement response, u3). The displacement
impedance for an infinite plate supporting flexural waves is an example of
this (e.g., equation A-28). Upon examinin2 the denominator of Equation (10a),
it can be seen there is no real value of X that Takes2 the dnominator zero
and consequently, Mc has no singularities when (k1 + k2 ) < k a . However, the

denominator of equation (11a) has a singularity when X - /y and k 2  a

When damping is included in the equations of motion for the
structure, the surface impedance typically is complex, where X = Xr + iXi ,
X i # 0, thus X* = Xr - iXi . Substituting this last expression for X* into
equation la , it is observed that Mc no longer has singularities
when k > ka since the term in the denominator becomes

( no 
+  Xr Po / Ix 2] + i[XiPo 2 /1X12]) and no value of Xr, Xi will make this whole

term in parenthesis zero. For small damping, the peaks of the Mc multiplier
singularities will be rounded off. In the range k < k , substituting

X* = Xr - iXi into equation (10a) yields a term in the denominator of the

form ([-.2 p° K r
1 l x 2i + i[l° - 1)2 p0 X i/'X,

2 1), thus, it is possible, as a result

of having a complex X, to introduce a new singularity at wavenumber (kj, k )
2where Xr (k1 , k2 ) = 0 and simultaneously, Xi(k 1 , k2 ) = pW /yo. Elastic solids

without damping can also exhibit a non-real X, for example if the solid were
an infinite solid in the x3 direction with no shear modulus, the surface
impedance is Z = -Po Cd, hence X* = ip0 Cd w.

(ii) Relative Magnitude Trends

Although the position of the singularities is important, of equal
importance is the question of whether the compliant wall pressure spectrum is
reduced in magnitude over the corresponding rigid surface spectrum. It is
desirable to have Mr/Mc >> 1 over a range of low wavenumbers in the domain
of interest. Dividing equations (11) into (10) give such a measure and lead
to the result

MrMc  2i~ 02poX*Ji k2 
_k

2

M/M - I ol for k a (12a)

Mr/Mc= jo +W 2 p oX4 0 1 for k2 > k2  (12b)

Again, consider t~e case where X* is real2 in t e surface
impedance equations, i.e., X = X. Therefore when k > ka$ small

positie X displacement impedances are desirable to insure Mc < Mr and
when k < ka, small 1XI impedances will insure Mc < M r . Eventually

as the surface impedance becomes softer and softer, i.e., as X*O, the
implementation of an Eulerian coordinate system used in (4) for the fluid
which interfaces with large Lagrangian deformations of the compliant solid
surface would require some modifications in the analysis to properly treat the
boundary condition across the fluid solid interface. Speciflcally when the
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deformations are large, the fluid-solid boundary condition cannot be evaluated

along the fixed Eulerian plane, x3 = 0, but rather along the actual deformed
surface of the solid surface.

In this paper, we have focused attention evaluating the spectrum at the
fluid-solid interface. If one wishes the spectrum of response at some
intermediate level within the solid, then an additional transfer function
relation is needed which relates surface response to response at some other
plane in the solid as was done for example in (6).

EXAMPLES OF INFLUENCE OF SURFACE TREATMENT ON WALL SPECTRA

The most general form of the compliant surface treatment in this paper is
illustrated in Figure 1 and consist of an isotropic layer of thickness, D,
(with optional dilatational damping parameter, nd, and shear damping
parameter, ns as defined in the Appendix).

Various bottom attachment boundary conditions are treated, with emphasis
on ones which result in surface impedances that depend on both the magnitude
and direction of the wavenumber vector, k. The derivation of the surface
impedance X, for each of the cases considered herein is lengthy and is
therefore discussed seperately in t Appendix. The number of parameters
governing the pressure spectrum multiplier for the most general model (i.e.
the upper layer-bottom plate combination) are substantial, consequently a
selected set of demonstration examples are used to illustrate certain
features. The spectrum frequency, f, is held constant at 6000 Hz in all
spectrum results and corresponds to one employed in reference (6). A
particular set of undamped material constants and material thickness for the
upper isotropic layer will be referred to from herein as the "base case layer":

)r = 105035.2 (psi); Vr = 5082.3 (psi)
base case layer

.000072 (lb-sec2/in4 ); D=10 '--2.54 (in)

where Ar, ur are the real layer elastic Lame' constants, p is the layer
mass density and D the layer thickness. Throughout this aper, the fluid
acoustic properties (for water) are taken as po=.000096 (lb-sec 2/in4 ),
bo=345600.0 (psi) where bo is the fluid bulk modulus. For reference
purposes, the base case layer and fluid moduli and densities can be written in
terms of the layer dilational wave speed, Cd, and shear wave speed, Cs,
and fluid acoustic wave speed, Ca, where Ca = 60,000 in/sec, Cd = (2/3).
Ca and Cs = Cdt /%51. The TBL thickness, h, is taken as 2.0 (in) in all Pxamplps.

Influence of Flow Speed on Pressure Spectrum

The compliant pressure spectrum multiplier relationship given by equation
(8), holds for both liquids and gases, however the Ulkl/w term will make
the pressure spectrum weakly depend on both the magnitude and direction of the
wavenumber vector k, even when the compliance, X, depends only on the
magnitude, k. To obtain a better understanding of how the pressure spectrum
is affected by surfaces with wavenumber direction dependence, the simpler
equations (10) and (11) are later used which are based on dropping the
Ujk/w term in equations (8) and (9). Thus, any observed directionality
dependance of the pressure spectrum will be due entirely on the directionality
dependence of the surface impedance alone.

The weak dependence of the spectrum on the Ujkl/w term, with water as
the acoustic medium, can be illustrated by comparing the upstream (+k1) and
the downstre,- - k1 ) modes for k2 = 0. As an example, consider a base
case layer ma .rial and thickness, where Cd = (213)Ca, and shear is
omitted, i.e. Cs = 0 and where the flow velocity is U1 = 30 ft/sec.

8
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Since Cs = 0, the layer depends only on the dilational wave speed in

the material. The surface impedance

=-2 Tan(Yd D)/Yd with Yd = k - (13)

can be obtained from reference (6) by letting the attached plate mass * ; or
alternatively, employing the procedure given in the Appendix, but using only
the dilatation potential 4 in conjunction with boundary conditions
corresponding to the first of (7-A) and third of (10-A). Substituting the
equation (13) impedance with a 30 ft/sec flow velocity into the more general
equations (8) and (9) lead to the result shown in Figure (2). In this plot
and all similar ones shown later, the small diamond marks on the horizontal
axis refer to the acoustic wavenumber. As pointed out in (4), for
U1 0, Er(k1,0,w) will have zeros only when k1 and w are opposite in
sign (i.e. for downstream propagating modes), consequently in the Figure (2)
result, the -k1 rigid curve spike near kl/ka = -1.has an infinite peak.
Other than the rounding off of the rigid curve singularity, at kl/ka -
+1.0, both the rigid and compliant surface wall pressure spectrum multipliers
are not significantly altered, thus justifying the omission of the Ulkl/w
term. In fact, except for the rounded off peak, overlaying the curves
generated by approximate equation (10) and (11) onto the Figure (2) curves
gave differences that did not show up graphically. The spectrum with
the Ulkl/w term dropped is shown in Figure 3-a, and as seen, there is no
significant difference between the two curves. In all cases that follow, the
approximate equations (10) and (11) will be used to display results, further,
since no new information exist for negative wavenumbers, only the plus values
are considered.

Influence of Shear Modulus and Damping Spectrum

Here the effect of introducing shear resistance and damping into the
isotropic layer model is examined. When shear effects are omitted, i.e.
Cs = 0, the fixed bottom, 10 cm isotropic layer yields the spectrum shown in
Figure 3-a. It is observed that the spike labeled dilatational effect occurred
when the normalized spectrum wavenumber, kl/ka, was roughly equal to the
normalized dilatational wavenumber kd/ka = (w/Cd)/(w/Ca) = 3/2, where
Cd = (2/3)C for this material. The singularities in the spectrum do not
occur exactly at the singularities in the impedance, X, (for example,
observing equations (10a) or (11a), clearly Mc is not infinite when X* is
infinite). However in this example, the impedance singularity, with the aid
of equation (13), is at YdD = w/2, or equivalently at kl/ka = [(3/2)2 - (5/2D)2]11/2.
Because the Tan (YdD) changes so rapidlywhen mov ng2only slightly away from
this root, the value of kI which makes X = -po w /y. in equation

(11a) is also in the neighborhood of the impedance singularity.

The effect of the shear modulus on the form of the pressure spectrum can
be achieved by redoing the same problem just described, except now the shear
wave speed is set at C = Cd/%51, while maintaining the same dilational
wave speed, Cd = (3/2)C, as before. The impedance for this case is
developed in section (i) of the Appendix. The new spectrum multiplier is
shown in Figure 3b. The effect of the shear modulus was to shift the
dilati' onal peak slightly to the left and introduce a new spike that is
labeleo layer shear effect. Both spikes result in a compliant spectrum
multiplier that locally rises above the rigid spectrum mulitplier. In Figure
(3c), damping was introduced by assigning complex values to the Lame'
constants corresponding to a dilatational damping ratio, nd, of .05 and a
shear ratio ns, of 0.10. Further details about these constants are given in
the Appendix. As shown by the figure, the damping substantially topped off
the peaks in the compliant spectrum multiplier.
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Influence of Plate Attachment on Pressure Spectrum

In this case, the fixed bottom is removed and is replaced with a 1 cm
thick isotropic plate, which is attached to the base case layer on the top
face of the plate and is free of surface tractions on the bottom face. The
plate has a Young's modules of E = 10.92 x 106 psi, a Poisson's ratio of
v=.3, and a mass density of pp = .00017. The equivalent orthotropic elastic
constants that reduce to the isotropic case for the plate can be obtained from
(9)

E = E22 = E/(1 - v2), E1 2 = v Ell, G = E/[2(1 + v)] (14)

and are employed in the layer-to-plate impedance formulation given in the
Appendix. The plate parameters used here are in a range where the thin plate
theory assumptions are valid at the frequency and plate thickness considered.
The resulting spectrum multiplier is shown in Figure 3d where it is observed
that dilational and shear peaks are roughly in the same position, but have
been altered because the attached plate does not offer the same rigid bottom
impedance boundary condition experienced by the Figure 3b case.

The membrane and flexure wave speeds of the freely propagating waves in
the unattached plate alone are km/ka = .225 and kf/ka = 1.71
respectively. The two new peaks, labeled plate membrane effect and plate
flexure effect occur at roughly these respective normalized wave numbers.
This case illustrates that the potential for unwelcomed spikes in the spectrum
is greater with increased complexity of the surface configuration.

Influence of Directional Boundary Conditions on Pressure Spectrum

In this example, the notion of altering the shape of the pressure
spectrum multiplier is considered. For example, it may be desirable to
eliminate one or more spikes in the streamwise direction (kl,0) while
allowing the the spikes to remain in the spanwise direction (O,k2). One way
of exploring this possibility is to change the boundary condition in xI
direction while leaving the x2 direction boundary condition the same.
Consider again the base case layer model, except here the shear traction,
a31(xl,x2,-D) at the layer bottom is released (i.e. set equal to zero)
instead of the zero velocity boundary condition used previously. The
impedance for this case is developed in part (ii) of the Appendix. Thus the
Figure 3b case is resolved under the same conditions, except the layer bottom
is allowed to slip in the xI direction. The new directional results are
presented in Figure 4, where the spectrum curves in Figure 4a and 4b are cuts
in the spectrum k = (O,k2) and (k1,0) respectively. It is observed upon
comparing these two plots, that the layer shear spike is removed from the
0 < kl/ka < 3 range of interest along the k1 at Figure 4b, while it
remains along the k2 cut, in Figure 4a. The transition from the (kl,O)
cut to the (0,k2) cut can be viewed by plotting the spectrum multiplier
vrsus2 th wavenumber direction (where 0 = arctan (k2/kl)), while holding
k = k1 +k2 = constant, and is illustrated in Figure 4c for three

different values of k /ka = 1.2, 1.89 and 2.99 respectively (notee=00

(kl,0) and 0 = 900 * (0, k2)). For comparative purposes, the same type
of plot for the new slip boundary condition is shown in the adjacent Figure
4d, drawn to the same scale. It is noted that the 0=00 spectrum levels of
Figure 4c slipping boundary case are about equal or lower than the
corresponding levels of 4d fixed boundary case.

Finally, another view of the overall full spectrum can be achieved by
making a 3-dimensional carpet plot of the resulting spectrum. For example, in
Figure 5 the totally fixed bottom (Figure 3b case) and xl-slip bottom
(Figure 4a, 4b case) are illustrated in Figure 5b and 5c respectively. All
the plots in Figure 5 are labeled with the same contour levels, however the
computer selected vertical scales might be slightly different. It is noted
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that the PATRAN plot routine used here, sampled the spectrum on a 61 x 61
rectangular (kl, k2) grid, consequently sharply peaked ridges appear to
have a "bed-of-nails" appearance, whereas they actually have a smooth ridge
appearance like the lip of a cup. In Figure 5c, the fade out of the shear
spike ridge starting at kIka - (0.0, 2.1) is observed and it tends to smooth
out at roughly klk a = (1.5, 1.5). For comparison purposes, the rigid wall
spectrum is shown in Figure 5a.

Finally, it is noted that another singularity appears to arise in the
neighborhood of klka = (3.0, 3.0) in Figure 5c. It is speculated that this
ridge is the result of some higher order singularities appearing in the
impedance expression. The occurance of such high order singularities can be
illustrated by examining the similar zero shear impedance layer governed by
equation (13), where so long as Yd is real, Yd D a v12, 31/2, 5:12, etc.
would lead to other higher order singularities. The impedance singularities
for the Figure 5c example are governed by the more complicated equation
(A-12), where the zero of the denominator of equation (A-12) would be evaluted
numerically, and the deformation mode of the surface would need to be examined
in order to identify the physical nature of the singularity. This level of
examination is beyond the intend of this demonstration problem and will not be
pursued further here.

Influence of Directional Property Plate on Pressure Spectrum

In this example, the directional property of the impedance is introduced,
by attaching a thin plate with directional material stress-strain properties
to the bottom of the base case layer. This is the same as the case considered
earlier in Figure 3d, except here, the stress-strain law moduli, Ell, E22,
E12, G employed in equation (A-17) of the Appendix are not dictated by the
isotropic conditions of equations (14), but rather these four quantities can
all be set independently.

The motivation for selecting the constants is guided by the previous
slipping boundary condition. Instead of totally releasing the x1 direction
surface traction (i.e., the slip condition, this effect is simulated by
substantially reducing the streamwise direction in-plane modulus, Ell, while
leaving the spanwise direction modulus equal to what it was for the isotropic
case. This type of material behavior can be achieved through the use of
fibrous materials imbedded in some sort of epoxy. For the case at hand, let
the directional properties (superscripts o) be the following fractions of the
previously used isotropic constants (superscripts i) in the example
corresponding for Figure 3d:

11= E 11 0 = 12.0 x 105 ; 22= E22 12.0 x 106

E12  1 E2110 = 3.60 x 105 ; = G /4 = 1.05 x 10

Upon using the above constants in conjunction with the layer-to-plate combined
impedance relationship derived in the Appendix, the resulting pressure
spectrum multipliers are shown in Figure 6a and 6b for the k = (kl, 0) and
k = (O,k2) cuts respectively. Upon comparing Figures 6a and 3d, it is noted
that the spanwise direction spectrum for the directional property plate is
very similar to the homogeneous plate spectrum (noting that even though Figure
3d is plotted vs k1 , it is exactly the same as the spectrum plotted vs
k2). It is observed that, the corresponding Figure 6a plot in the
streamwise direction is missing the shear spike, analogous to the slipping
boundary case. Thus a traction release condition is simulated with soft
moduli in the slip direction of interest.

The transition from the k2 plane, containing the shear spike, into the
kI plane can be better illustrated by comparing the Figure 7a carpet plot of
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the spectrum multiplier for the layer-homogeneous plate case (i.e., the carpet
plot counterpart of Figure 3d) to the corresponding Figure 7b carpet plot for
the layer-directional property plate case. In Figure 7a, the shear spike
(third ridge of spikes from the origin) continues to travel from the Mc-k 2
plane to a corresponding position in the Mc-kl plane; however, in the
Figure 7b plot, the shear spike starting in the Mc-k2 plane, heads outward
and away from intersecting with the k1 axis over the range
0 < kl/k a < 3.

The effect of plate damping is illustrated in Figure 6c by assigning the
directional property plate damping parameters (defined in the Appendix) of

nl = ip2 = np12 = 0.1 while leaving the base case layer undamped. As
shown, the damped and undamped spectrum multipliers are practically
indistinguishable for kl/ka > .6 except for the rounded off spikes (the
reduced peaks are indicated by the dashed lines). The damped plate evolves a
new spike for kl/ka < .6 that is not present in the undamped case. The
reason for this type of occurrence when damping is present was discussed
earlier in the spectrum trends section. Next, the effect of layer damping is
shown in Figure 6d by assigning the base case layer damping parameters of nd
= .05, ns = .10 while leaving the plate undamped. In this case, the layer
damping has a more dramatic effect on reducing the magnitude of the spectrum
multiplier as compared to the plate damping case. The carpet plot counterpart
of the Figure 6d layer damping case is shown in Figure 7c wherein the overall
smoothing of spectrum multiplier is evident.

Finally, the influence of base case layer thickness and material
variations on the undamped directional property plate-layer model spectrum
just considered in Figures 6a and 6b is displayed in Figure 8. The spanwise
and streamwise curves in Figure 8a and 8b repeat the Figure 6a, 6b case except
the layer thickness D is halfed (i.e., 5 cm). For reference purposes, the
results of the 0 and 0/2 case are overlayed and as shown, the thinner layer
appears to be a smoother curve with only one major spike over the wavenumber
range considered. The Figure 8c example again is a repeat of the Figure 6a
case for a directional property plate-layer surface except here, all other
things held constant, the layer dilational wave speed is greater by a factor
of 1.5, while the layer shear wave speed remains the same. For comparison
purposes, both the original and new case are superimposed onto the same plot.
The new 1.5 Cp case has removed the dilatational spike while leaving the
shear layer peak and fluxure wave peak in about the same position as the
previous Cp case.

CONCLUDING REMARKS

The study presented herein starts with an isotropic base case layer
surface compliance and investigates the effect of various compliance
alterations such as changes in boundary conditions, backing plate attachments,
material properties, damping treatments and thickness. The appearance of
spikes in the pressure spectrum multipliers is often dramatically altered by
such variations. The results show that it is possible to shape the spectrum
multiplier over some desired wavenumber-frequency domain by altering the
boundary conditions and/or material properties.
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APPENDIX

In this appendix, the development for obtaining the surface impedance for
the general model shown in Fig. I is given. The procedure is broken up into
two phases, where the first is for the isotropic layer with general
non-symmetric boundary conditions and the second phase is concerned with
attaching a plate with directional material properties.

Top Layer Impedance

The procedure is to load the surface of the solid, x3 = 0, with a
pressure distribution of the form

033(x1,x2,0, ') = -aPo e (A-I)

where -w't is used rather than +wt in order to be consistent with the
referenced potential formulation (8) employed in this section. At the end of
the derivation, the desired impedance can be obtained by replacing w' with -W
to be consistent with the sign convention for w used to derive the spectrum
equation (1). Upon solving for the normal veolcity, u3(x,y,,o'), the
velocity impedance is found from

Z(-') =-a33 / 3  (A-2)

Following the potential solution formulation (8) for linear elastic time
dependent solutions, the equations of elasticity can be rewritten in terms of
three uncoupled potential solutions, based on rewriting the displacement
vector in the form

j= +M- + N (A-3)

where for Cartesian Coordinates, L, M, N reduce to the simpler forms

L =V#(x,t) M = (x,t) xj N = ta__X) - 1 VZ(X) (A-4)
ax2

The notation T, T, k refer to unit vectors along the corresponding x1, x2,
x3 coordinate directions. The arbitrary scale factor,j, can be absorbed
into a new potential, O=.X. The equations for determining 0,iF , x are
solutions to

2 2-
C2  - = (A-5)

d at2  at at

The steady state solutions to these potential equations can be written as

4(0,t) = exp[-iydx 3] + do exp[iYdx 3] exp[i(kIxI + ki2x -

I-R -R

i(it) -Nx exp[-iysx31 + Xo exp[iysX31 exp[i(k 1x1 + k2x2 -fit)]
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where d YS and

kd =w/Cd, ks =w/C s and k2 = k2 + k2 and Cd and Cs are the

dilatational and shear wave speeds in the solid layer. The root of Yd, Y

is selected as positive when w' is plus and minus when w' is negative. The
solutions (A-6) will satisfy the field equations (A-5). The remaining step is to
find the six amplitudes 01, etc. that satisfy the boundary conditions.
Three types of boundary conditions will be used. A descriptive triplet of
words will be used to describe the condition, where the first word refers to
the xI direction condition, second word the x2 direction and the third
word the x3 direction. In all cases the top boundary condition is the same,
namely the normal stress in the negative of the surface pressure (i.e.,
enforcement of the condition described by equation (A-1))and that the low
wavenumber in-plane surface shear stresses are negligible)

=-pex(klX1+k2x2ut)

033(x1x2
0 ,w

') = -&Po exp(k1x1kx 
wo)

031(x1,x2,0,') = 0.0 032(x1,x2 ,0,'w) = 0.0 (A-7)

The enforcement of the boundary conditions require information about velocity
and stress, so the following relations are needed to connect the potent.al
solutions to the physical unknowns. These are obtained by substituting (A-6)
in the stress strain law of linear elasticity, where x, m are the ,near
elastic Lame' constants.

21 +
Lax3 -l 2 axx

3 3 2.a

031 -p 2 ax1  ax 2 ax ax 2 ax (A-a
1  a 3 3

[2 a2 + A'- + 2 33 + 2 j
032 aX X x1a 2aa a...a22L2 sax3 1S x2 ax3  ax1 ax2  ax3 ax 2

where equations (A-5) have been used to simplify equations (A-8).
Substituting (A-4) into (A-3) and differentiating with respect to time gives
the velocity components

ax i ax 3  ax1 a 2]

.F[ aa2i a2X 1i + _ _+ 2 (A)

u2  ax ax ax3  3 ax ax ax3 ax2 (A9

in terms of 4,4jj.

(i) Fixed-Fixed-Fixed Boundary Condition

Upon substituting equations (A-8) into the fixed bottom boundary
condition
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ul(xl'x2,-D,w' ) = 0 u2 (xl,x 2,-D,w') = 0 u3(xlx 2,-D,w') - 0 (A-10)

and into top boundary conditions (A-7), and cancelling out exp[i(klxI +
k2x2 - 't)], simultaneous complex algebraic equations of the form

R 0

1 0
A(kl,k2 ,') (A-11)

R
0

N ~o

0R

arise and are solved employing the double precision IMSL package equation

I -R Tsolver on a VAX computer. Upon solving for {, ..... x , amplitudes for each

desired kl,k 2,w' set, the corresponding normal velocity, 63 is computed
at the surface and substituted into equation (2a) to form the velocity surface
impedance

AP

ZW) R (A-12)
(~s[d(~R - 4 k(ti0 + 41) - iy k2 (X0

The above i related to the X* needed in the wall pressure spectrum formulas
by X =-iwZ,= .

(ii) Free-Fixed-Fixed Boundary Condition

In this case the bottom side of the layer is free to slide in the
xj direction while remaining fixed in the vertical and x2 direction. Upon
substituting equations (A-) into the conditions

? 31 (x1,x2,-D,1w') = 0 a2(xl,x 2,-Dw') = 0 63 (xlx 2,-D,w') = 0 (A-13)

again lead to a set of equationsof the form (A-11) except the A(kl,k 2 ,' )
array is different because of the different boundary conditions. Upon solvinq
the new system of equations, the impedance is again formed with equation
(A-12).

(iii) Free-Free-Free Boundary Condition

Here the bottom surface is free of all surface tractions and
consequently upon substituting equations (A-8) into the conditions

031(xl,x 2,-D,w) = 0 a32(x1,x2,-D,w') = 0 a33(Xlx 2,-Dw') = 0 (A-14)

again lead to equations analogous to (A-11) and finally to the impedance via
equation (A-12).
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COMBINED TOP LAYER-BOTTOM PLATE IMPEDANCE

The impedance relation for the combined isotropic layer-plate of Fig. 1
can be developed by first obtaining the impedance relationship between normal
stress and normal velocity and also, the impedance relating surface shear and
in-plane motion for a thin elastic plate. These normal and in-plane plate
impedances are then used as boundary conditions which are applied to the
bottom side of the isotropic layer.

(i) Normal Motion Plate Impedance

The equations of motion for an orthotropic flat plate are given by
(9) in the form

4w a4w + OPT a(w
4 a--+ 1 2 2- + T = +q(xlx 2,t) (A-45)

ax 1  1x 2 32 at

where q, the normal distributed surface traction, is taken as positive upward
(in the -x3 direction); w is the normal displacement to the plate (taken as
positive in the +x3 direction), pp is the plate mass density per unit
volume, T is the plate thickness and D1 , 2 and H are the orthotropic
plate rigidities and are given by

1 T3D11  = T3E22  T3EI2 2T3G

D 12 2 12" =- (A-l6)

where the Ell, E22, E12, G moduli are constants appearing in the stress
strain law of the form

o1l = El 11 11 E12 £22 022 = E22 e22 +El 2 €1 012 = 6 Y1 2  (A-l7)

where £11,e22, are the curvature strains corresponding to the transverse
deformation w. The normal traction on the plate is expressed in the form
q = qo exp[i(klXl + k2x2 - w't)] and the response, w is in the form
w - wo exp[i(klx1 + k2x2 - w't)]. Upon substituting these two
expressions into equation (A-15) and solving for w in terms of q, we obtain

Z33(&,) =a = -i [0pT
2 - (51k + 2Hk'k2 + D2k ) (A-18)

(ii) In-plane Motion Plate Impedance

The ih-plane plate dynamic equilibrium equations (9) are given by

aN11  aN12  21x1-T  + 12-- +' = pT a

aN12  aN22  2x1 + 2x2 +- .r pT 3 (A-19)

a1  2 at

where N11, N22, N12 are the plate in-plane membrane faces and a 1, a
2 are the plate surface tractions. The in-plane strain displacement
relations are given by
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au av au a av (A-20)
~11 ax1 x 22 Tx fl2 a x2  a x1

and the in-plane membrane forces are related to the in-plane stresses by the
relations

Nil = Tall N22 = T022  N12 = Tot 2  (A-21)

Substituting (A-21) and (A-20) into (A-17) expresses the membrane forces in
terms of motion. Then substituting that result into (A-19) yields

2 2 2 a2
auu a2 a v - +pT a2

u

ax1 a x2  a 1 ax2  at
(A-22)

2 2 2 2a v a v au -2 pT avK2  2 N + K5 axI ax 2 OP _
ax2  axi 1 a 1 x2  at

where the coefficients are related to the orthotropic material constants by

the relations

K1 = TE11, K2 = TE22, K5 . T(E12 + G), K4 = TG (A-23)

Next the tractions and motions are expressed in the form

ATI = ArOI exp(i[klx I + k2x2 - "'t]), A'2 = AT02 exp(i[klx I + k2x2 - 't])

u = uo exp(i[kl1x + k2x2 - w't]), and v = vo exp(i[klx I + k2x2 - w'tl)

and upon substitution into the equations of motion (A-22), the following
impedance relations

zu + Zv .2 Z; + Zu (A-24)^ 13 Z13 2 23 Z23

where

=u Kl2 + Kk 2 
- 0 TW'2)iw 13 25l

13K-k1  K4 2 13/ ZV (kkK5)/w

zv 3 = (K2  + K k2 - pTw'2)i/w. Z'3 =(~ 2 5 i~

(iii) Layer-To-Plate Interface Connection

The bottom side of the layer at x3 = -D is connected to the plate
with the boundary conditions

o31(x1,x2,-D,w') = a'1  o32(x1,x2,-D,') I A£2 033(x1,x2,-Dw) - q

Employing the plate impedance conditions (A-18) and (A-24) and noting the
surface motions of the layer are equal to the plate middle surface motions
(i.e., u - u1(xl,x 2,-D,w'), u2(xl,x2,-D,w') and w = u3(xlx 2,-D,w')
the interface boundary conditions to the layer can be written as
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a31(x1,x2,-D,') = 13 u1(xl,x 2,-D,w') + ZV3 u 2(xl,x 2-D,w
')

o32(x1,x2,-D,w') - Z23 2(x1,x2 -Dw,) + Z23 1(X1,x2_D,,) (A-25)

o33(x1,x2,-D,w')) = (

At this point, the procedure is essentially the same as the'earlier simple
boundary condition cases, where the desired fluid-layer interface surface
impedance is obtained by substituting equations (A-8) into (A-25) and producing

I -R T
again, a set of equations like (A-11). Solving (A-11) for {0&, ... Xo
the final desired velocity surface impedance is evaluated with (A-12).

Introduction of Structural Damping

A simple form of steady state harmonic damping can be introduced by
simply replacing the real elastic constants in the layer and/or plate, with
corresponding complex moduli . Defining n as the ratio of the imaginary to
the real component of the appropriate elatic moduli (denoted by i, r
superscript respectively). For the layer, we define

ns  Iu and nd = (A i + 2 i),(,r + 2 r) (A-26)

and for the plate

i Er Ei Er Ei r GIG
0p1 = 11E11 "P2 = 22122 "p12 = 12 = r (A-27)

Surface Impedance Verification

The computer program which generates the compliant surface spectrum is
straightforward, but rather lengthy, consequently some check cases are used to
verify the accuracy of the calculations.

(i) Plate Theory Comparison

In this case, the upper isotropic layer impedance formulation is checked
out against the corresponding thin plate velocity impedance (6) given by the
simple expression

Z = -i(ppT,.2 - Dpk 2)/w = -iXlw (A-28)

where the plate modulus is defined in Dp = ET3/[12(1 - v2)1.

A secondary by-product of this checkout is additional information
regarding the adequacy of simple plate theory (i.e., without shear and rotary
inertia correction effects) while using the dimension and material constants
employed in the lower plate attachment model considered in the earlier Figure
3d. Consequently, the dimension and material of the check calculation are
exactly the same as the plate model from Figure 3d. The impedance is computed
with both the elastic solution discussed in section (iii) of this appendix,
and with the simple plate impedance, equation A-28. The comparative impedance
results (normalized by the PoCa of the fluid) results are plotted in
Figure I-A, and as osbserved, the agreement is very good over the range of
interest 0 < ki/ka < 3.0 herein. For larger values of kl/ka, the
rotary inertia and shear correction terms are needed in order to continue to
employ plate theory. The breakdown of the simple theory occurs roughly when
the freely propagating flexure wavelength is about 1/5 or greater than the
plate thickness (10).
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(ii) Isotropic Layer (zero shear) - Isotropic Plate Check

Here, the impedance of the reference (6) surface model consisting of a
layer of material (with zero shear modulus) attached to an isotropic plate is
used as a check case. The material properties and dimensions of the layer and
plate correspond to the ones used in Figure 3d sample problem, with the
exception that the base case layer Lame' elastic constants were assigned so
the shear modulus was extremely small (i.e., p = 10.0 psi) and the
dilatational wave speed of the layer remains the same as the base case layer
dilatational wave speed. The shear modulus is not set exactly zero, to avoid
numerous indeterminant forms that would appear in the equation (A-12)
impedance formula. The real and imaginary parts of the normalized velocity
impedance are shown in Figure 2-A and as shown, the two results overlay each
other over the whole domain of interest.

(iii) Omnidirectional Impedance Check

The impedance used to generate the Figure 4d curves employs all three of
the potentials used in2 equation A-12), consequently the fact that the results
are the same for any k1 + k 2 = k = constant combination of kl,

k2 is an additional check on the expected omnidirectional impedance
relationship.
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